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INTRODUCTION 

The mini-computer** has a wide variety of uses: com- 
munications controller; instrument controller; large- 
system pre-processor ; real-time data acquisition 
systems . . .; desk calculator. Historically, Digital 
Equipment Corporation’s PDP-8 Family, with 6,000 
installations has been the archetype of these mini- 
computers. 

In  some applications current mini-computers have 
limitations. These limitations show up when the scope 
of their initial task is increased (e.g., using a higher 
level language, or processing more variables). Increasing 
the scope of the task generally requires the use of 
more comprehensive executives and system control 
programs, hence larger memories and more processing. 
This larger system tends to be at the limit of current 
mini-computer capability, thus the user receives 
diminishing returns with respect to memory, speed 
efficiency and program development time. This limita- 

tion is not surprising since the basic architectural 
concepts for current mini-computers were formed in 
the early 1960’s. First, the design was constrained by 
cost, resulting in rather simple processor logic and 
register configurations. Second, application experience 
was not available. For example, the early constraints 
often created computing designs with what we now 
consider weaknesses : 

1. limited addressing capability, particularly of 

2. few registers, general registers, accumulators, 

3. no hardware stack facilities 
4. limited priority interrupt structures, and thus 

slow context switching among multiple programs 
(tasks) 

larger core sizes 

index registers, base registers 

5. no byte string handling 
6. no read only memory facilities 
7. very elementary 1/0 processing 

* Also a t  Carnegie-Mellon University, Pittsburgh, Pennsylvania. 
** The PDP-11 design is predicated on being a member of one (or more) of the micro, midi, mini, . . ., maxi (computer name) mark&. 
We will define these names as belonging to computers of the third generation (integrated circuit to medium scale integrated circuit 
technology), having a core memory with cycle time of .5 - 2 microseconds, a clock rate of 5 - 10 Mhz . . ., a single processor with inter- 
rupts and bual ly  applied to doing a particular task (e.g., controlling a memory or communications lines, pre-proceasing for a larger 
system, process control). The specialized names are defined as follows: 

processor and word processor 
maximum addressable memoty coat length slate 

primary memory (words) (1970 kilodollars) (bits) ( W W W  dutn types 

m i W 0  

mini 
midi 

8 K  
32 K 

65 - 128 K 

- 5  8 - 12 2 integers, words, boolean vectors 
5 - 10 12 - 16 2-4 vectors (Le., indexing) 

10 - 20 16 - 24 4-16 double length floating point 
(occasionally) 

657 
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8. no larger model computer, once a user outgrows a 

9. high programming costs because users program 
particular model 

in machine language. 

In  developing a new computer the architecture 
should at  least solve the above problems. Fortunately, 
in the late 1960’s integrated circuit semiconductor 
technology became available so that newer computers 
could be designed which solve these problems at  low 
cost. Also, by 1970 application experience was available 
to influence the design. The new architecture should 
thus lower programming cost while maintaining the 
low hardware cost of mini-computers. 

The DEC PDP-11, Model 20 is the first computer 
of a computer family designed to span a range of func- 
tions and performance. The Model 20 is specifically 
discussed, although design guidelines are presented 
for other members of the family. The Model 20 would 
nominally be classified as a third generation (integrated 
circuits), 16-bit word, 1 central processor with eight 
16-bit general registers, using two’s complement 
arithmetic and addressing up to 216 eight bit bytes of 
primary memory (core). Though classified as a general 
register processor, the operand accessing mechanism 
allows it to perform equally well as a 0-(stack), 
1-(general register) and 2-( memory-to-memory) address 
computer. The computer’s components (processor, 
memories, controls, terminals) are connected via a 
single switch, called the Unibus. 

The machine is described using the PMS and ISP 
notation of Bell and Newel1 (1970) a t  different levels. 
The following descriptive sections correspond to the 
levels: external design constraints level; the PMS 
level-the way components are interconnected and 
allow information to flow; the program level or ISP 
(Instruction Set Processor)-the abstract machine 
which interprets programs; and finally, the logical 
design level. (We omit a discussion of the circuit 
level-the PDP-11 being constructed from TTL inte- 
grated circuits.) 

DESIGN CONSTRAINTS 

The principal design objective is yet to be tested; 
namely, do users like the machine? This will be tested 
both in the market place and by the features that are 
emulated in newer machines; it will indirectly be 
teated by the life span of the PDP-11 and any offspring. 

Word lf?ngth 

The most critical constraint, word length (defined 
by IBM) was chosen to be a multiple of 8 bits. The 

memory word length for the Model 20 is 16 bits, 
although there are 32- and 48-bit instructions and 8- 
and 16-bit data. Other members of the family might 
have up to 80 bit instructions with 8-, 16-, 32-and 
48-bit data. The internal, and preferred external 
character set was chosen to be 8-bit ASCII. 

Range and performance 

Performance and function range (extendability) 
were the main design constraints; in fact, they were 
the main reasons to build a new computer. DEC 
already has (4) computer families that span a range* 
but are incompatible. In  addition to the range, the 
initial machine was constrained to fall within the 
small-computer product line, which means to have 
about the same performance as‘a PDP-8. The initial 
machine outperforms the PDP-5, LINC, and PDP-4 
based families. Performarce, of course, is both a 
function of the instruction set and the technology. 
Here, we’re fundamentally only concerned with the 
instruction set performance because faster hardware 
will always increase performance for any family. 
Unlike the earlier DEC families, the PDP-11 had to 
be designed so that new models with significantly 
more performance can be added to the family. 

A rather obvious goal is maximum performance for 
a given model. Designs were programmed using bench- 
marks, and the results compared with both DEC and 
potentially competitive machines. Although the selling 
price was constrained to lie in the $5,OOO to $lO,OOO 
range, it was realized that the decreasing cost of logic 
would allow a more complex organization than earlier 
DEC computers. A design which could take advantage 
of medium- and eventually large-scale integration was 
an important consideration. First, it could make the 
computer perform well; and second, it would extend 
the computer family’s life. For these reasons, a general 
registers organization was chosen. 

Interrupt response 

Since the PDP-11 will be used for real time control 
applications, it is important that devices can com- 
municate with one another quickly (Le., the response 
time of a request should be short). A multiple priori’ty 
level, mted interrupt mechanism was selected; addi- 
tional priority levels are provided by the physical 
position of a device on the Unibus. Software polling is 

* PDP-4,7,9, 15 family; PDP-5, 8, 8/S, 8/I, 8/L family; LINC, 
PDP-8/LINC, PDP-12 family; and PDP-6, 10 family. The 
initial PDP-1 did not achieve family status. 

I 
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unnecessary because each device interrupt corresponds 
to a unique address. 

Software 

The total system including software is of course the 
main objective of the design. Two techniques were 
used to aid programmability: first benchmarks gave a 
continuous indication as to how well the machine 
interpreted programs; second, systems programmer 
continually evaluated the design. Their evaluation 
considered : what code the compiler would produce; 
how would the loader work; ease of program reloc- 
ability; the use of a debugging program; how the 
compiler, assembler and editor would be coded-in 
effect, other benchmarks; how real time monitors 
would be written to use the various facilities and 
present a clean interface to the users; finally the ease 
of coding a program. 

Modularity 

Structural flexibility (sometimes called modularity) 
for a particular model was desired. A flexible and 
straightforward method for interconnecting components 
had to be used because of varying user needs (among 
user classes and over time). Users should have the 
ability to configure an optimum system based on cost, 
performance and reliability, both by interconnection 
and, when necessary, constructing new components. 
Since users build special hardware, a computer should 
be easily interfaced. As a by-product of modularity, 
computer components can be produced and stocked, 
rather than tailor-made on order. The physical struc- 
ture is almost identical to the PMS structure discussed 
in the following section; thus, reasonably large building 
blocks are available to the user. 

Microprogramming 

A note on microprogramming is in order because of 
current interest in the “firmware” concept. We believe 
microprogramming, as we understand it (Wilkes, 1951), 
can be a worthwhile technique as it applies to processor 
design. For example, microprogramming can probably 
be used in larger computers when floating point data 
operators are needed. The IBM System/360 has 
made use of the technique for defining processors that 
interpret both the System/36O instruction set and 
earlier family instruction sets (e.g., 1401, 1620, 7090). 
In  the PDP-11 the basic instruction set is quite straight- 
forward and does not necessitate microprogrammed 

interpretation. The processor-memory connection is 
asynchronous and therefore memory of any speed can 
be connected. The instruction set encourages the user 
to write reentrant programs; thus, read-only memory 
can be used as part of primary memory to gain the 
permanency and performance normally attributed to 
microprogramming. In fact, the Model 10 computer 
which will not be further discussed has a 1024-word 
read only memory, and a 128-word read-write memory. 

Il nderstandability 

Understandability was perhaps the most funda- 
mental constraint (or goal) although it is now somewhat 
less important to have a machine that can be quickly 
understood by a novice computer user than it was a 
few years ago. DEC’s early success has been predi- 
cated on selling to an intelligent but inexperienced 
user. Understandability, though hard to measure, is 
an important goal because all (potential) users must 
understand the computer. A straightforward design 
should simplify the systems programming task; in the 
case of a compiler, it should make translation (par- 
ticularly code generation) easier. 

PDP-11 STRUCTURE AT THE PMS LEVEL* 

Introduction 

PDP-11 has the same organizational structure as 
nearly all present day computers (Figure 1). The 
primitive PMS components are : the primary memory 
(Mp) which holds the programs while the central 
processor (Pc) interprets them; io controls (Kio) which 
manage data transfers between terminals (T) or second- 
ary memories (Ms) to primary memory (Mp); the 
components outside the computer a t  periphery (X) 
either humans (H) or some external process (e.g., 
another computer) ; the processor console (T. console) 
by which humans communicate with the computer 
and observe its behavior and affect changes in its 
state; and a switch (S) with its control (K) which 
allows all the other components to communicate with 
one another. In  the case of PDP-11, the central logical 
switch structure is implemented using a bus or chained 
switch (S) called the Unibus, as shown in Figure 2. 
Each physical component has a switch for placing 
messages on the bus or taking messages off the bus. 
The central control decides the next component to 

* A descriptive (blockdiagram) level (Bell and Newell, 1970) to 
describe the relationship of the computer components: processors 
memories, switches, controls, links, terminals and data operators. 
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h u u n  umer 
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e.&, Tele- 
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h u u n  uaer 
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Convantionel block d i a g r r  

'€us *Ot.tIon 

Figure 1-Conventional block diagram and PMS diagram 
of PDP-11 

use the bus for a message (call). The S (Unibus)differs 
from most switches because any component can pom- 
municate with any other component. 

The types of messages in the PDP-11 are along the 

lines of the hierarchical structure common to present 
day computers. The single bus makes conventional 
and other structures possible. The message processes 
in the structure which utilize S(Unibus) are: 

1. 

2. 

3. 

4. 

1 

The central processor (Pc) requests that data 
be read or written from or to primary memory 
(Mp) for instructions and data. The processor 
calls a particular memory module by concur- 
rently specifying the module's address, and the 
address within the modules. Depending on wheth- 
er the processor requests reading or writing, 
data is transmitted either from the memory to 
the processor or vice versa. 
The central processor (Pc) controls the initializa- 
tion of secondary memory (Ms) and terminal (T) 
activity. The processor sets status bits in the 
control associated with a particular Ms or T, and 
the device proceeds with the specified action 
(e.g., reading a card, or punching a character into 
paper tape). Since some devices transfer data 
vectors directly to primary memory, the vector 
control information (i.e., the memory location 
and length) is given as initialization information. 
Controls request the processor's attention in the 
form of interrupts. An interrupt request to the 
processor has the effect of changing the state of 
the processor; thus the processor begins executing 
a program associated with the interrupting 
process. Note, the interrupt process is only a 
signaling method, and when the processor inter- 
ruption occurs, the interruptee specifies a unique 
address value to the processor. The address is a 
starting address for a program. 
The central processor can control the transmission 
of data between a control (for T or Ms) and 
either the processor or a primary memory for 
program controlled data transfers. The device 
signals for attention using the interrupt dialogue 
and the central processor responds by managing 
the data transmission in a fashion similar to 
transmitting initialization information. 

Unibu. control p a c k p d  w i t h  Pc 

Figure 2-PDP-11 physical structure PMS diagram 
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,+. 

9 

5. 

6. 

i T  Teletype; Model 33.35 ASR; 
f u l l  duplex; 10 char/sec; 

char set: ASCII; 8 b idchar  

3' 
3' 

- T  paper tape; reader; [ 100 char/sec; 8 bitichar 

[ 100 char/.cc; 8 bidchar 

-T paper tape; punch; 

16 b/u; 32768 u; i .rate;  66 ps/u; 

t.access: 0 - 3 4  msec. I -l4 secondary/r; fixed head disk; 

[ 
(60 cycle  clak)-L(60 cycle  line)- 

Some device controls (for T or Ms) transfer data 
directly to/from primary memory without central 
processor intervention. In this mode the device 
behaves similar to a processor; a memory address 
is specified, and the data is transmitted between 
the device and primary memory. 
The transfer of data between two controls, e.g., a 
secondary memory (disk) and say a terminal/T. 
display is not precluded, provided the two use 
compatible message formats. 

As we show more detail in the structure there are, 
of course, more messages (and more simultaneous 
activity). The above does not describe the shared 
control and its associated switching which is typical of 
a magnetic tape and magnetic disk secondary memory 
systems. A control for a DECtape memory (Figure 3) 
has an S('DECtape bus) for transmitting data between 

M~(#o:~; 'DECtape) . . 

3 I S 'DECtape bus; 
concurrency: 1 

Unibbs 

i[ 
Ki o ( ' DEC t a pe  
S 

Figure 3-DECtape eontrol switching PMS diagram 

a single tape unit and the DECtape transport. The 
existence of this kind of structure is based on the 
relatively high cost of the control relative to the cost 
of the tape and the value of being able to run concur- 
rently with other tapes. There is also a dialogue at the 
periphery between X-T and X-Ms which does not use 
the Unibus. (For example, the removal of a magnetic 
tape reel from a tape unit or a human user (H) striking 
a typewriter key are typical dialogues.) 

All of these dialogues lead to the hierarchy of present 
computers (Fig. 4). In  this hierarchy we can see the 
paths by which the above messages are passed 
(Pc-Mp; Pc-K; K-Pc; Kio-T and Kio-Ms; and Kio-Mp; 
and, at the periphery, T-X and T-Ms; and T.console-H). 

Model 20 implementation 

Figure 5 shows the detailed structure of a uni- 
processor, Model 20 PDP-11 with its various 

Figure 4-Conventional hierarchy computer structure 

components (options). In  Figure 5 the Unibus charac- 
teristics are surpressed. (The detailed properties of the 
switch are described in the logical design section.) 

Extensions to increase performance 

The reader should note (Figure 5 )  that the important 
limitations of the bus are: a concurrency of one, namely, 
only one dialogue can occur a t  a given time, and a 
maximum transfer rate of one 16-bit word per .75 psec., 
giving a transfer rate of 21.3 megabits/second. While 
the bus is not a limit for a uni-processor structure, it is 
a limit for multiprocessor structures. The bus also 
imposes an artificial limit on the system performance 
when high speed devices (e.g., TV cameras, disks) are 

Figure 5-PDP-I I structure and characteristics PMS diagr.am 
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b. 4 port 

Figure 6 - 1  and 4 port memory modules PMS diagram 

transferring data to multiple primary memories. On a 
larger system with multiple independent memories the 
supply of memory cycles is 17 megabits/second times 
the number of modules. Since there is such a large 
supply of memory cycles/second and since the central 
processor can only absorb approximately 16 megabits/ 
second, the simple one Unibus structure must be 
modified to make the memory cycles available. Two 
changes are necessary: first, each of the memory modules 
have to be changed so that multiple units can access 
each module on an independent basis; and second, there 
must be independent control accessing mechanisms. 
Figure 6 shows how a single memory is modified to have 
more access ports (i,e., connect to 4 Unibusses). 

Figure 7 shows a system with 3 independent memory 
modules which are accessed by 2 independent Uni- 
busses. Note that two of the secondary memories and 
one of the transducers are connected to both Unibusses. 
It should be noted that devices which can potentially 
interfere with Pc-Mp accesses are constructed with 
two ports; for simple systems, the two ports are both 
connected to the same bus, but for systems with more 
busses, the second connection is to an independent bus. 

initialiuticm 
and interrupt 

P,c K('Unibus) T. . .  ye... / rssages 

Figure 7-Three Mp, 2 S('Unibus) structure PMS diagram 

Figure 8 shows a multiprocessor system with two 
central processors and three Unibusses. Two of the 
Unibus controls are included within the two processors, 
and the third bus is controlled by an independent con- 
trol unit. The structure also has a second sixitch to 
allow either of two processors (Unibusses) to access 
common shared devices. The interrupt mechanism 
allows either processor to respond to an interrupt and 
similarly either processor may issue initialization 
information on an anonymous basis. A control unit is 
needed so that two processors can communicate with 
one another; shared primary memory is normally used 
to carry the body of the message. A control connected 
to two Pc's (see Figure 8) can be used for reliability; 
either processor or Unibus could fail, and the shared 
Ms would still be accessible. 

Higher performance processors 

Increasing the bus width has the greatest effect on 
performance. A single bus limits data transmission to 
21.4 megabits/second, and though Model 20 memories 
are 16 megabits/second, faster (or wider) data path 
width modules will be limited by the bus. The Model 
20 is not restricted, but for higher performance pro- 
cessors operating on double word (fixed point) or triple 
word (floating point) data two or three accesses are 
required for a single data type. The direct method to 
improve the performance is to double or triple the 
primary memory and central processor data path 
widths. Thus, the bus data rate is automatically 
doubled or tripled. 

For 32- or 48-bit memories a coupling control unit 
is needed so that devices of either width appear iso- 
morphic to one another. The coupler maps a data 

r? Pc T... UJ... 
I 

c f... ... I 
&... T... w- c MP -1 

& n e  

data'ttansfers 

' K.('Unibur) 
*S('UnLbus Multiple bua ,to s-le bue coupler; 

f r a :  2 hibum; to: 1 Unibus) 

'I( 'Rocassor to processor coupler) 
4&(duplex) 

Figure 8-Dual' Pc multiprocessor system PMS diagram 
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request of a given width into a higher- or lower-width 
request for the bus being coupled to, as shown in 
Figure 9. (The bus is limited to a fixed number of 
devices for electrical reasons; thus, to extend the bus 
a bus repeating unit is needed. The bus repeating 
control unit is almost identical to the bus coupler.) A 
computer with a 48-bit primary memory and processor 
and 16-bit secondary memory and terminals (trans- 
ducers) is shown in Figure 9. 

In summary, the design goal was to have a modular 
structure providing the final user with freedom and 
flexibility to match his needs. A secondary goal of the 
Unibus is open-endedness by providing multiple busses 
and defining wider path busses. Finally, and most 
important, the Unibus is straightforward. 

THE INSTRUCTION SET PROCESSOR (ISP) 
LEVEL-ARCHITECTURE* 

Introduction, background and design constraints 

The Instruction Set Processor (ISP) is the machine 
defined by hardware and/or software which interprets 
programs. As such, an ISP is independent of technology 
and specific implementations. 

The instruction set is one of the least understood 
aspects of computer design; currently it is an art. There 
is currently no theory of instruction sets, although 
there have been attempts to construct them (Maurer, 
1966), and there has also been an attempt to have a 
computer program design an instruction set (Haney, 
1968). We have used the conventional approach in 
this design: first a basic ISP was adopted and then 
incremental design modifications were made (based on 
the results of the benchmarks).** 

* The word architecture has been operationally defined (Amdahl, 
Blaauw and Brooks, 1964) as “the attributes of a system as seen 
by a programmer, i.e., the conceptual structure and functional 
behavior, as distinct from the organization of the data flow and 
controls, the logical design and the physical implementation.” 
** A predecessor multiregister computer was proposed which 
used a similar design process. Benchmark programs were coded 
on each of 10 “competitive” machines, and the object of the 
design was to get a machine which gave the best score on the 
benchmarks. This approach had several fallacies: the machine 
had no basic character of its own; the machine was difficult to 
program since the multiple registers were assigned to specific 
functions and had inherent idiosyncrasies to score well on the 
benchmarks; the machine did not perform well for programs other 
than those used in the benchmark test; and finally, compilers 
which took addvantage of the machine appeared to be difficult 
to write. Since all “competitive machines” had been hand-coded 
from a common flowchart rather than separate flowcharts for each 
machine, the apparent high performance may have been due to 
the flowchart organization. 

Although the approach to the design was conven- 
tional, the resulting machine is not. A common classi- 
fication of processors is as zero-, one-, two-, three-, or 
three-plus-one-address machines. This scheme has the 
the form: 

op 11, 12, 13, 14 

where 11 specifies the location (address) in which to 
store the result of the binary operation (op) of the 
contents of operand locations 12 and 13, and 14 specifies 
the location of the next instruction. 

The action of the instruction is of the form: 

11 t 12 op 13; goto 14 

The other addressing schemes assume specific values 
for one or more of these locations. Thus, the one- 
address von Neumann (Burks, Goldstine and von 
Neumann, 1946) machines assume 11 = 12 = the 

and 14 is the location following that of 
the current instruction. The two-address machine 
assumes 11 = 12; 14 is the next address. 

Historically, the trend in machine design has been 
to move from a 1 or 2 word accumulator structure as 
in the von Neumann machine towards a machine with 
accumulator and index register(s).* As the number of 
registers is increased the assignment of the registers to 
specific functions becomes more undesirable and 
inflexible; thus, the general-register concept has 
developed. The use of an array of general registers in 
the processor was apparently first used in the first- 
generation, vacuum-tube machine, PEGASUS (Elliott 
et al., 1956) and appears to be an outgrowth of both 
1- and 2-address structures. (Two alternative struc- 
tures-the early 2- and 3-address per instruction 
computers may be disregarded, since they tend to 
always access primary memory for results as well as 
temporary storage and thus are wasteful of time and 
memory cycles, and require a long instruction.) The 
stack concept (zero-address) provides the most efficient 

Ms... T... 

coupler; 

Figure 9-Computer with 48 bit Pc, Mp with 16 bit Ms, T 
PMS diagram 

* Due in part to needs, but mainly technology which dictates how 
large the structure can be. 
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access method for specifying algorithms, since very 
little space, only the access addresses and the operators, 
needs to be given. In  this scheme the operands of an 
operator are always assumed to be on the “top of the 
stack”. The stack has the additional advantage that 
arithmetic expression evaluation and compiler state- 
ment parsing have been developed to use a stack 
effectively. The disadvantage of the stack is due in 
part to the nature of current memory technology. That 
is, stack memories have to be simulated with random 
access memories, multiple stacks are usually required, 
and even though small stack memories exist, as the 
stack overflows, the primary memory (core) has to be 
used. 

Even though the trend has been toward the general 
register concept (which, of course, is similar to a two 
address scheme in which one of the addresses is limited 
to small values), it  is important to recognize that any 
design is a compromise. There are situations for which 
any of these schemes can be shown to be “best”. The 
IBM System/360 series uses a general register struc- 
ture, and their designers (Amdahl, Blaauw and Brooks, 
1964) claim the following advantages for the scheme: 

1. Registers can be assigned to various functions: 
base addressing, address calculation, fixed point 
arithinetic and indexing. 

2. Availability of technology makes the general 
registers structure attractive. 

The System/360 designers also claim that a stack 
organized machine such as the English Electric KDF 9 
(Allmark and Lucking, 1962) or the Burroughs B5000 
(Lonegran and King, 1961) has the following disad- 
vantages : 

1. 

2. 

3. 

4. 

5. 

6. 

Performance is derived from fast registers, not the 
way they are used. 
Stack organization is too limiting and requires 
many copy and swap operations. 
The overall storage of general registers and stack 
machines are the same, considering point #2. 
The stack has a bottom, and when placed in 
slower memory there is a performance loss. 
Subroutine transparency is not easily realized 
with one stack. 
Variable length data is awkward with a stack. 

We generally concur with points 1, 2, and 4. Point 5 is 
an erroneous conclusion, and point 6 is irrelevant (that 
is, general register machines have the same problem). 
The general-register scheme also allows processor 
implementations with a high degree of parallelism since 
instructions of a local block all can operate on several 

registers concurrently. A set of truly general purpose 
registers should also have additional uses. For example, 
in the DEC PDP-10, general registers are used for 
address integers, indexing, floating point, boolean 
vectors (bits), or program flags and stack pointers. The 
general registers are also addressable as primary 
memory, and thus, short program loops can reside 
within them and be interpreted faster. It was observed 
in operation that PDP-10 stack operations were very 
powerful and often used ((accounting for as many as 
20% of the executed instructions, in some programs, 
e.g., the compilers.) 

The basic design decision which sets the PDP-11 
apart was based on the observation that by using 
truly general registers and by suitable addressing 
mechanisms it was possible to consider the machine as 
a zero-address (stack) , one-address (general register) , 
or two-address (memory-to-memory) computer. Thus, 
it is possible to use whichever addressing scheme, or 
mixture of schemes, is most appropriate. 

Another important design decision for the instruction 
set was to have only a few data types in the basic 
machine, and to have a rather complete set of opera- 
tions for each data type. (Alternative designs might 
have more data types with few operations, or few data 
types with few operations.) In part, this was dictated 
by the machine size. The conversion between data 
types must be easily accomplished either automatically 
or with 1 or 2 instructions. The data types should 
also be sufficiently primitive to allow other data types 
to be defined by software (and by hardware in more 
powerful versions of the machine). The basic data 
type of the machine is the 16 bit integer which uses 
the two’s complement convention for sign. This data 
type is also identical to an address. 

PDP-11 model 20 instruction set (basic instruction set) 

A formal description of the basic instruction set is 
given in Appendix 1 using the ISPL notation (Bell 
and Newell, 1970). The remainder of this section will 
discuss the machine in a conventional manner. 

Primary memory 

The primary memory (core) is addressed as either 
216 bytes or 215 words using a 16 bit number. The 
linear address space is also used to access the input- 
output devices. The device state, data and control 
registers are read or written like normal memory 
locations. 
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General register 

The general registers are named: R[O:7](15:0)*; 
that is, there are 8 registers each with 16 bits. The 
naming is done starting (at the left with bit 15 (the 
sign bit) to the least significant bit 0. There are syno- 
nyms for R[6] and R[7]: 

Stack Pointer/SP(15:0) := R[6](15:0) 
used to access a special stack which is used to 
store the state of interrupts, traps and sub- 
routine calls 

Program Counter/PC(15:0) := R[7](15:0) 
points to the current instruction being inter- 
preted. It will be seen that the fact that PC is 
one of the general registers is crucial to the 
design. 

Any general register, R[O:7], can be used as a stack 
pointer. The special Stack Pointer (SP) has additional 
properties that force it to be used for changing processor 
state interrupts, traps, and subroutine calls (It also 
can be used to control dynamic temporary storage 
subroutines.) 

In addition to the above registers there are 8 bits 
used (from a possible 16) for processor status, called 
PS(15.0) register. Four bits are the Condition Codes 
(CC) associated with arithmetic results; the T-bit 
controls tracing; and three bits control the priority of 
running programs Priority (2: 0). Individual bits are 
mapped in PS as shown in Appendix 1. 

Data types and primitive operations 

There are two data lengths in the basic machine: 
bytes and words, which are 8 and 16 bits, respectively. 
The non-trivial data types are word length integers 
(w.i.); byte length integers (by .i); word length boolean 
vectors (w.bv), i.e., 16 independent bits (booleans) in 
a 1 dimensional array; and byte length boolean vectors 
(by.bv). The operations on byte and word boolean 
vectors are identical. Since a common use of a byte is 
to hold several flag bits (booleans), the operations can 
be combined to form the complete set of 16 operations. 
The logical operations are: “clear,” “complement,” 
“inclusive or,” and “implication” (x 3 y or i x  v y). 

There is a complete set of arithmetic operations for 
the word integers in the basic instruction set. The 
arithmetic operations are : add, subtract, multiply 
(optional), divide (optional), compare, add one, sub- 
tract one, clear, negate, and multiply and divide by 

powers of two (shift). Since the address integer size is 
16 bits, these data types are most important. Byte 
length integers are operated on as words by moving 
them to the general registers where they take on the 
value of word integers. Word length integer operations 
are carried out and the results are returned to memory 
(truncated). 

The floating point instructions defined by software 
(not part of the basic instruction set) require the 
definition of two additional data types (of length two 
and three), i.e., double word (d.w.) and triple (t.w.) 
words. Two additional data types, double integer 
( d i )  and triple floating point (t.f. or f )  are provided 
for arithmetic. These data types imply certain addi- 
tional operations and the conversion to the more 
primitive data types. 

Address (operand) calculation 

The general methods provided for accessing operands 
are the most interesting (perhaps unique) part of the 
machine’s structure. By definiqg several access methods 
to a set of general registers, to memory, or to a stack 
(controlled by a general register), the computer is able 
to be a 0, 1 and 2 address machine. The encoding of 
the instruction Source (S) fields and Destination (D) 
fields are given in Fig. 10 together with a list of the 
various access modes that are possible. (Appendix 1 
gives a formal description of the effective address 
calculation process.) 

I It should be noted from Figure 10 that all the com- 
mon access modes are included (direct, indirect, im- 
mediate, relative, indexed, and indexed indirect) plus 
several relatively uncommon ones. Relative (to PC) 
access is used to simplify program loading, while 
immediate mode speeds up execution. The relatively 
uncommon access modes, auto-increment and auto- 
decrement, are used for two purposes: access to a 
stack under control of the registers* and access to 
bytes or words organized as strings or vectors. The 
indirect access mode allows a stack to hold addresses 
of data (instead of data). This mode is desirable when 
manipulating longer and variable-length data types 
(e.g., strings, double fixed and triple floating point). 
The register auto increment mode may be used to 
access a byte string; thus, for example, after each 
access, the register can be made to point to the next 
data item. This is used for moving data blocks, search- 
ing for particular elements of a vector, and byte- 
string operations (e.g., movement, comparisons, edit- 
ing). 

* A  definition of the ISP riotat,ion used here may be found in 
Appendix 1. 

*Note, by convention a stack builds toward register 0, and when 
the stack crosses 4008, a stack overflow occurs. 

I 
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rn I d 1  

s ('11 10 9 8 ' 7 ' 6 'bit 

r '  

( s m  id *I 

4 3 2  1 0 b i t  f d. dd dr 

I - resister specification I[r] 
d - defer ( indirect)  mddress b i t  
I d e  (00 - R[r]; 01 - I[r]; next I[r] +eiil 

10 - N r l .  Rtrl -.I, n a t  112) 
11 - indexed with next word) 

The following access d e s  cen be specified: 
0 direct-to a register. I[=] 

1 indir.ct-to a 1egisc.r. I[=] for address of data 

2 euto increment via regis ter  (pop) - use regis ter  as address. then 

3 l u t o ~ ~ ~ ~ ~ n i e ~ : ' ~ ~ 6 i s t a ~  (pop) - defer  
4 auto dacrmment via ragistmr (push) - d e c r e m t  register. then u u  

regis ter  as addrass 
5 auto decre-nt indirect  - decrement register. then use r e s i s t e r  as the 

address of the addream of data 

2 i r r d i a t e  date - next f u l l  wrd is the data ( F P C )  

3 direct  data - next f u l l  wrd is the address of dete ( r P C )  

6 d i rec t  indexed - use next f u l l  wrd indexed w i t b  .[TI as address of data 

7 direct  indexed - indirect  - uae next f u l l  ward i n h n d  uith l[r] as tba 

addresm of tb. address of data 

6 re lat ive access - next f u l l  w r d  plus  ?C is the address (FK) 
7 re lat ive indirect  access - next f u l l  vord plus ?C is the address of the 

address of data (rR) 

'address i n c r a t l a i  value is 1 or 2 

Figure 10-Address ca1culatio.n formats 

This addressing structure provides flexibility while 
retaining the same, or better, coding efficiency than 
classical machines. As an example of the flexibility 
possible, consider the variations possible with the most 
trivial word instruction MOVE (see Figure 11). The 
MOVE instruction is coded BS, it would appear in 
conventional Paddress, 1-address (general register) 
and 0-address (stack) computers: The two-address 
format is particularly nice for MOVE, because it 
provides an efficient encoding for the common opera- 
tion: A t B (note, the stack and general registers are 
not involved). The vector move A[I] t B(1) is also 
efficiently encoded. For the general register (and 
1-address format), there are about 13 MOVE opera- 
tions that are commonly used. Six moves can be 
encoded for the stack (about the same number found 
in stack machines). 

Instruction formats 

There are several instruction decoding formats 
depending on whether 0, 1, or 2 operands have to be 
explicitly referenced. When 2 operands are required, 
they are identified as Source/S and Destination/D and 

the result is placed at Destination/D. For single 
operand instructions (unary operators) the instruction 
action is D t u D; and for two operand instructions 
(binary operators) the action is D + D b S (where u 
and b are unary and binary operators, e.g., 1, - and 
+, - , x , /, respectively. Instructions are specified 
by a 16-bit word. The most common binary operator 
format (that for operations requiring two addresses) 
is shown below. 

15 12 11 6 5  0 

OP D S 

The other instruction formats are given in Figure 12. 

Instruction interpretation process 

The instruction interpretation process is given in 
Figure 13, and follows the common fetch-execute 
cycle. There are three major states: (1) interrupting- 
the PC and PS are placed on the stack accessed by 
the Stack Pointer/SP, and the new state is taken from 
an address specified by the source requesting the trap 
or interrupt; (2) trace (controlled by T-bit)-essen- 
tially one instruction at  a time is executed as a trace 

Figure 1 1 - W n g  for the MOVE instruction to compare with 
conventional machines 
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B h r y  arithmetic aod l o g i c a l  operatima: bor I S I D 1 '  
form: D t S  b D 

example: ADD (:=bo~=0010) + (CC.D t m s ) ;  

Utury arithmetic aod lo8 ica l  operation: L r l l  
form: D t u  D; 

examples: NE (:-uop=OOoo1oiiOO) + (CC,D + - D) - megab 

ASL (:~uop=OOO00110011) - (CC,D t Il X 2); s h i f t  l e f t  

Breach ( r e l a t i v e )  operators: brop I o f f a c t ]  

form: 

example: 
2 brop c m d i t l m  lprs (PC +FC + o f f a e t ) ;  

BEP (: - brop - 031s) (2 + (PC c P C  + o f f s e t ) ) :  

J u p :  10 000 000 001 1 D 

Jump t o  a u b r o u t h :  

save 

form: PC c D  + Pc 

0 ooo l oo  I D  1 
n[sr] m sC.ck. emter subroutine a t  D + PC 

lie. operatima: I op code 1 
form: ST c f  

e u q l e :  W T  (: - i n s t r u c t i m  - 0) + (IUII + 0 ) ;  

'lot.: them inatruet ima  are a11 1 word. 

addit ional  i m d i a t e  data or addream word. 

be 1 ,  2, or 3 wrds I-. 

D and/or S M y  each require 1 

Thus i oa truc t lm.  can 

Figure 12-PDP-11 instruction formats (simplified) 

W 

Figure 13-PDP-11 instruction interpretation process 

trap occurs after each instruction, and (3) normal 
instruction interpretation. The five (lower) states in 
the diagram are concerned with instruction fetching, 
operand fetching, executing the operation specified by 
the instruction and storing the result. The non-trivial 
details for fetching and storing the operands are not 
shown in the diagram but can be constructed from the 
effective address calculation process (Appendix 1). The 
state diagram, though simplified, is similar to 2- and 
3-address computers, but is distinctly different than a 
1 address (1 accumulator) computer. 

The ISP description (Appendix 1) gives the opera- 
tion of each of the instructions, and the more conven- 
tional diagram (Fig. 12) shows the decoding of instruc- 
tion classes. The ISP description is somewhat incom- 
plete; for example, the add instruction is defined as: 
ADD (:= bop = 0010) + (CC,D t D + S); addition 
does not exactly describe the changes to the Condition 
Codes/CC (which means whenever a binary opcode 
[bop] of OOlOz occurs the ADD instruction is executed 
with the above effect). In  general, the CC are based 
on the result, that is, Z is set if the result is zero, N if 
negative, C if a carry occurs, and V if an overflow was 
detected as a result of the operation. Conditional 
branch instructions may thus follow the arithmetic 
instruction to test the results of the CC bits. 

Examples of addressing schemes 

Use as a stack (zero address) machine 

Figure 14 lists typical zero-address machine instruc- 
tions together with the PDP-11 instruct,ions which 
perform the same function. It should be noted that 
translation (compilation) from normal i n k  expressions 
to reverse Polish is a comparatively trivial task. Thus, 
one of the primary reasons for using stacks is for the 
evaluation of expressions in reverse Polish form. 

Consider an assignment statement of the form 

D - A + B / C  

which has the reverse Polish form 

DABC/+ t 

and would normally be encoded on a stack machine 
aa follows 

load stack address of D 
load stack A 
load stack B 
load stack C 
/ + 

state diagram Store 
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-: 
p l u .  addrams valru A m .tack 
load stack from -y address specified 
by s t u k  
l w d  stack from rmory locatim A 

stor. stack at  -wry d d r a s s  specified 
by stack 

store stack u -ry locatim A 

duplicate top of s t u k  
+ , add 2 top data of stmk to  a t u k  

-, X. f ;  subtract. u l t i p l y ,  divida 

-; negate top data of stack 

clear top data of mtuk 

v; “inclu.ive orn 2 top data of stack “end“ 
2 top data of stack 
-; c a p l e r n t  top of s u c k  

test top of .tack (set  branch indieatore) 

brmcb m W i c a t o r  
Jtap mconditioly1 
add addremeed locatim A t o  top of stack - 
(not c- for stack r c h i n c )  equivalent 
to: 1o.d stack, add -p top 2 stack data 

resat stack locatim t o n  

A, “md“ 2 top stack data 

‘Stack pointer I u s  been arbitrarily wed as register 110 for t h i s  example. 

Figure 14-Stack computer instructions and equivalent 
PDP-I1 inst,ructions 

However, with the PDP-11 there is an address method 
for improving the program encoding and run time, 
while not losing the stack concept. An encoding im- 
provement is made by doing an operation to the top 
of the stack from a direct memory location (while 
loading). Thus the previous example could be coded 
as : 

load stack B 
divide stack by C 
add A to stack 
store stack D 

Use as a one-address (general register) machine 

The PDP-11 is a general register computer and 
should be judged on that basis. Benchmarks have 
been coded to compare the PDP-11 with the larger 
DEC PDP-IO. A 16 bit processor performs better 
than the DEC PDP-10 in terms of bit efficiency, but 
not with time or memory cycles. A PDP-11 with a 32 
bit wide memory would, however, decrease time by 
nearly a factor of two, making the times essentially 
comparable. 

Use as a two-address machine 

Figure 15 lists typical two-address machine instruc- 
tions together with the equivalent PDP-11 instructions 

for performing the same operations. The most useful 
instruction is probably the MOVE instruction because 
it does not use the stack or general registers. Unary 
instructions which operate on and test primary memory 
are also useful and efficient instructions. 

Extensions of the instruction set for real (floating point) 
arithmetic 

The most significant factor that affects performance 
is whether a machine has operators for manipulating 
data in a particular format. The inherent generality 
of a stored program computer allows any computer by 
subroutine to simulate another-given enough time 
and memory. The biggest and perhaps only factor 
that separates a small computer from a large computer 
is whether floating point data is understood by the 
computer. For example, a small computer with a 
cycle time of 1.0 microseconds and 16 bit memory 
width might have the following characteristics for a 
floating point add, excluding data accesses: 

programmed : 250 microseconds 

programmed (but special normalize 
and differencing of exponent 
instructions) : 75 microseconds 

microprogrammed hardware : 25 microseconds 

hardwired : 2 microseconds 

It should be noted that the ratios between pro- 
grammed and hardwired interpretation varies by 
roughly two orders of magnitude. The basic hardwiring 
scheme and the programmed scheme should allow 
binary program compatibility, assuming there is an 
interpretive program for the various operators in the 
Model 20. For example, consider one scheme which 
would add eight 48 bit registers which are addressable 
in the extended instruction set. The eight floating 
registers, F, would be mapped into eight double length 

T w  Address Commuter 
A c B; transfer B to A 

A +A*; add -. X I  / 
A c -A; ncaata 

A c A  v 8 ;  ineluaive or 
A c- A; DOC 

J w p  m c a d i t i m e d  

Test A, and trmatcr t o  8 

Figure 1.3-Two address computer instructions and equivalent 
PDP-11 instructions 
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(32 bit) registers, D. In  order to access the various 
parts of F or D registers, registers FO and Fl are 
mapped onto registers RO to R2 and R3 to R5. 

Since the instruction set operation code is almost 
completely encoded already for byte and word length 

data, a new encoding scheme is necessary to specify 
the proposed additional instructions. This scheme adds 
two instructions: enter floating. point mode and execute 
one floating point instruction. The instructions for 
floating point and double word data would be: 

binary ops 

bop' S D 

unary ops 

uop' D 

OP 

t 

+ 
X 
/ 

compare 

- 

LOGICAL DESIGN OF S(UN1BUS) AND PC 

The logical design level is concerned with the physi- 
cal implementation and the constituent combinatorial 
and sequential logic elements which form the various 
computer components (e.g., processors, memories, 
controls). Physically, these components are separate 
and connected to the Unibus following the lines of the 
PMS structure. 

Unibus organization 

Figure 16 gives a PMS diagram of the Pc and the 
entering signals from the Unibus. The control unit for 
the Unibus, housed in Pc for the Model 20, is not 
shown in the figure. 

The PDP-11 Unibus has 56 bi-directional signals 
conventionally used for program-controlled data trans- 
fers (processor to control) , direct-memory data trans- 
fers (processor or control to memory) and control-to- 
processor interrupt. The Unibus is interlocked; thus 
transactions operate independent of the bus length 
and response time of the master and slave. Since the 
bus is bidirectional and is used by all devices, any 
device can communicate with any other device. The 
controlling device is the master, and the device to 
which the master is communicating is the slave. For 
example, a data transfer from processor (master) to 
memory (always a slave) uses the Data Out dialogue 
facility for writing and a transfer from memory to 
processor uses the Data In  dialogue facility for reading. 

floating point/f and double word/d 

FMOVE 
FADD 
FSUB 
FMUL 
FDIV 
FCMP 

FNEG 

Bus control 

DMOVE 
DADD 
DSUB 
DMUL 
DDIV 
DCMP 

DNEG 

Most of the time the processor is bus master fetching 
instructions and operands from memory and storing 
results in memory. Bus mastership is determined by 
the current processor priority and the priority line 
upon which a bus request is made and the physical 
placement of a requesting device on the linked bus. 

Figure 16-PDP-11 Pc structure 
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The assignment of bus mastership is done concurrent 
with normal communication (dialogues). 

lj nibus dialogues 

Three types of dialogues use the Unibus. All the 
dialogues have a common protocol which first consists 
of obtaining the bus mastership (which is done con- 
current with a previous transaction) followed by a 
data exchange with the requested device. The dialogues 
are: Interrupt; Data In  and Date In Pause; and Data 
Out and Data Out Byte. 

Interrupt 

Interrupt can be initiated by a master immediately 
after receiving bus mastership. An address is trans- 
mitted from the master to the slave on Interrupt. 
Normally, subordinate control devices use this method 
to transmit an interrupt signal to the processor. 

Data in and data in pause 

These two bus operations transmit slave's data 
(whose address is specified by the master) to the 
master. For the Data In  Pause operation data is read 
into the master and the master responds with data 
which is to be rewritten in the slave. 

Data out anddata out byte 

These two operations transfer data from the master 
to the slave at the address specified by the master. 
For Data Out a word at the address specified by the 
address lines is transferred from master to slave. Data 
Out Byte allows a single data byte to be transmitted. 

Processor logical design 

The Pc is designed using TTL logical design com- 
ponents and occupies approximately eight 8" X 12" 
printed circuit boards. The organization of the logic is 
shown in Figure 17. The Pc is physically connected to 
two other components, the console and the Unibus. 
The control for the Unibus is housed in the Pc and 
occupies one of the printed circuit boards. The most 
regular part of the Pc, the arithmetic and state section, 
is shown at the top of the figure. The 16-word scratch- 
pad memory and combinatorial logic data operators, 
D(shift) and D(adder, logical ops), form the most 
regular part of the processor's structure. The 16-word 

memory holds most of the 8-word processor state 
found in the ISP, and the 8 bits that form the Status 
word are stored in an %bit register. The input to the 
adder-shift network has two latches which are either 
memories or gates. The output of the adder-shift 
network can be read to either the data or address 
parts of the Unibus, or back to the scratch-pad array. 

The instruction decoding and arithmetic control are 
less regular than the above data and state and these 
are shown in the lower part of the figure. There are 
two major sections: the instruction fetching and 
decoding control and the instruction set interpreter 
(which in effect defines the ISP). The later control 
section operates on, hence controls, the arithmetic 
and state parts of the Pc. A final control is concerned 
with the interface to the Unibus (distinct from the 
Unibus control that is housed in the Pc). 

CONCLUSIONS 

In this paper we have endeavored to give a complete 
description of the PDP-11 Model 20 computer at four 
descriptive levels. These present an unambiguous 
specification at  two levels (the PMS structure and the 
ISP), and, in addition, specify the constraints for the 
design at the top level, and give ths reader some idea 
of the implementation at  the bottom level logical 
design. We have also presented guidelines for forming 
additional models that would belong to the same 
family. 
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APPENDIX 1 

DEC PDP-11 instruction set processor Description (in ISPL*) 

The following description is not a detailed description of the instructions. The description m i t s  the trap behavior of 
unimplemented instructions, references to non-existent primary memory and io devices, SP (stack) overflow, and power 
failure. 
Primary Memory State 

M/Mb/Memory [0 : 216- 13 (7 : 0) 
M~[O:2~~-1](15:0) : = M[0:216-1](7:0) 

R/Registers[O:7)(15:0) (word general registers) 

(byte memory) 
(word memory mapping) 

Processor State (9 words) 

SP(15:O) : = R[6](15:0) 
PC(15:O) : = R[7](15:0) 

(stack pointer) 
(program counter) 

*ISP NOTATION 

Although the ISP language has not been described in publications, its syntax is similar to other languages. The language is inherently 
interpreted in parallel, thus to get sequential evaluation the word “next” must be used. Italics are used for comments. The following 
notes are in order: 
a :  = f(. . .) equivalence or substitution process used for name and process substitution. For every occurrence of 

a+(. . .) Replacement operator; the contents in register a are replaced by the value of the function. 

register declaration, e.g., an array of words of two dimensions 2 and 4096; each word has 16 bits denoted 15, 14, 13, . . ., 1, 0 
&[0:1] [0:4095] (15:O) 

~,f(. . .) replaces it. 

(a :b ) ,  

Ic:d 
a+b; 

“next” sequential interpretation 

instruction declaration, e.g., 
ADD (: = bop = 0010) -+ 

Denotes a range of characters a, a + 1. . . . , b to base n. If n is not given, the base is 2. 

Array designation c, c + 1, . . ., d 

equivalent to ALGOL if a then b 

defines the “ADD” instruction, assigns it a value, and gives its operation. ADD is executed when 
bop = 001%. Equivalent to: 

(CC, D + D + S) A D D + ( C C , D + D + S )  
where 
ADD: = (bop = 0010) bop has been previously declared 

0 
operators: = (+/add I -/subtract/negate I X/multiply I //divide I A /and I v /or I d / n o t  I @/exclusive or I =/equal/> /greater 

concatenation, consider the combined registers as one 

than I 2 I < I 5 I # I modulo I etc.) 
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PS(15: 0) 
Priority/P(2:0) : = PS(7:5) 

CC/Condition,Codes(3:0) : = PS(3:O) 

Carry/C : = CC(0) 

Negative/N : = CC(3) 

Zero/Z : = CC(2) 

Overflow/V : = CC(1) 

Trace/T : = ST(4) 

Undefined(7:O) : = PS(15:S) 
Run 
Wait 

Instruction Format 
(Bit assignments used in the various instruction formats) 

i/instruction( 15 : 0) 
bop(3:O) : = i(15: 12) 
uop(15:6) : = i(15:6) 
brop(15:8) : = i(15:S) 
sop(15:6) : = i(15:6) 
s/source(5:0) : = i ( l l :6)  

sm(0:l) : = s(5:4) 
sd : = s ( 3 )  
sr : = s(2:O) 

d/destination(5:0) : = i(5:O) 
dm(0:l) : = d(5:4) 
dd : = d(3) 
dr(2:O) : = d(2:O) 

offset(7iO : = i(7:O) 
address, increment/ai 

Data Types 
by/byte(7:0) 
w/word( 15 : 0) 
byJbyte.integer(7 : 0 )  
w.i/word.integer(15:0) 
by.bv/byte.boolean,vector (7 : 0) 
w.bv/word.boolean,vector(l5:0) 

(processor state register) 
(under program control; priority 
level of the process currently being 
interpreted a higher level process 
m a y  interrupt or trap this. process) 

(under program control; when set, 
each instruction executed will trap; 
used for interpretive and break- 
point debuggin.g) 

( a  result condition code indicating 
an arithmetic carry from bit 16 of 
the last operation) 

( a  result condition code indicating 
last result was negative) 

( a  result condition code indicating 
last result was zero) 

( a  result condition code indicating 
an arithmetic overjlow of the last 
operation) 

(denotes whether instruction trace 
trap i s  to occur after each instruc- 
tion i s  executed) 

(unused)  
(denotes normal execution) 
(denotes waiting for an interrupt) 

(binary operation code) 
(unary  operation code) 
(branch operation code) 
(shijt operation code) 
(source control byte) 
(source mode control) 
(source defer bit) 
(source register) 
(destination control byte) 

(signed 7 bit integer) 
(implicit bit derived f rom i to denote 
byte or word length operations) 

(signed integers) 

(boolean vectors (bits))  
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d/double, word (31 : 0) 
t/triple,word(47:0) 
f/t.f/triple.floating, point (47:O) 

S/Source(l5:O) : = ( 
Source/S and Destination/D Calculation 

sd -+ ( 
(sm = 00) -+ R[sr]; 
(sm = 01) A (sr # 7) -+ (M[R[sr]]; next R[sr] +- R[sr] + ai); 
(sm = 01) r\ (sr = 7) -+ (MCPC]; PC +- PC + 2 ) ;  
(sm = 10) -+ (Rcsr] t R[sr] - ai; next M[R[sr]]); 
(sm = 11) A (sr # 7) -+ (M[M[PC] + RCsr]]; PC t PC + 2 ) ;  
(sm = 11) A (sr = 7) -+ (M[M[PC] + PC]; PC t PC + 2 ) ) ;  

(sm = 00) -+ M[R[sr]]; 
(sm = 01) A (sr # 7) -+ (M[M[R[sr]]]; next R[sr] + R[sr] + ai); 
(sm = 01) A (sr = 7) -+ (M[M[PC]]; PC t PC + 2); 
(sm = 10) -+ (R[sr] t R[sr] - ai; next M[R[sr]]); 
(sm = 11) A (sr # 7) -+ (M[M[PC] + R[sr]]; PC + PC + 2); 
(sm = 11) A (sr = 7) -+ (M[M[M[PC] + PC]]; PC t PC + 2)) 

sd -+ ( 

(*double word) 
(*triple word) 
(*triple floating point) 

(direct access) 
(register) 
(auto increment) 
(immediate) 
(auto decrement) 
(indexed) 
(relative) 
(indirect access) 
(indirect via register) 
(indirect via stack, auto decrement) 
(direct absolute) 
(indirect via stack, auto increments) 
(indirect, indexed) 
(indirect relative) 

( T h e  above process dejines how operands are determined (accessed) from either memory or the registers. The various 
length operands, Db(byte), Dw(word),  Dd(doub1e) and Df(jloating) are not completely dejined. The SourcelS and 
DestinationlD processes are identical. I n  the case of j u m p  instruction a n  address, D',  i s  used-instead of the word in 
1 ocation M [ CI]. ) 

Instruction Interpretation Process 
1 Interrupt,rqs A Run A Wait -+ (i t MCPC]; Pc  t Pc + 2; (fetch) 

(execute) 
(trace bit store state) 

next instruction, execution ; next 
T -+ (SP t SI' + 2; next 

M[SP] t PS; 
SP t SP + 2; next 
M[SP] t PC; 

ST +- MC1681)) 
PC t M[148] 

Interrupt,rq[j] A (CC[j] > CC) A Run -+ (T t 0; 
SP t SP + 2; next 
MCSP] t PS; 

SP t SP + 2; 
MCSP] t PC 
PC +- MCf(j)l 
PS + M[f(j) + 21) 

Instruction Set and the Execution Process 

(interrupt) 

(store state and PC enter new proc- 
ess). The locations M [  f (  j ) ]  are: 
reserved instruction = M[lO] 
illegal instruction = M[4] 
stack overflow = M[43 
bus errors = Mc4-J) 

( T h e  following instruction set will be defined briefly and i s  incomplete. I t  i s  intended to give the reader a simple under- 
standing of the machine operation.) 

Instruction,execution : = ( 
MOV(: = bop = OOOl) -+ (CC,D t S); 
MOVB(: = bop = 1001) --+ (CC,Db t Sb); 

* not hardwired or optional 

(move word) 
(move byte) 
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Binary Arithmetic: D + D b S; 
ADD(: = bop = 0110) -+ (CC,D + D+s) ; 
SUB(: = bop = 1110) -+ (CC,D + D - S); 
CMP(:=bop = 0 0 1 0 ) - + ( C C t D - S ) ;  
CMPB(: = bop = 1010) -+ (CC + Db - Sb) ; 
MUL(: = bop = 0111) + (CC,D + D X S) ; 

DIV(: = bop = 1111) -+ (CC,D + D/S) ; 

Unary Arithmetic D + u S; 
CLR(: = UOP = 0508) -+ (CC,D + 0) ; 
CLRB(: = UOP = 10508) -+ (CC,Db + 0); 
COM(: = UOP = 0518) -+ (CC,D + 7D); 
COMB(: = UOP = 10518) -+ (CC,Db + ,Db); 
INC(: = UOP = 0528) + (CC,D t D + 1);  
INCB(: = UOP = 10528) -+ (CC,Db t Db + 1); 
DEC(: = UOP = 0538) -+ (CC,D + D - 1) ; 
DECB(: = UOP = 10538) + (CC,Db + Db - 1) ; 
NEG(: = UOP = 0548) -+ (CC,D + - D) ; 
NEGB(: = UOP = 10548) + (CC,Db + -Db) 
ADC(: = UOP = 0558) -+ (CC,D + D + C); 
ADCB(: = UOP = 10558) + (CC,Db + Db + C); 
SBC(: = UOP = 0568) -+ (CC,D + D - C); 
SBCB(: = UOP = 10568) -+ (CC,Db + Db - C) ; 
TST(: = UOP = 0578) -+ (CC + D); 
TST(: = UOP = 10578) -+ (CC + Db) ; 

Shift operations: D + D x 2"; 
ROR(: = sop = 0608) -+ (COD t COD/2(rotate] ; 
RORB(: = sop = 10608) + (CODb + CODb/B{rotate)); 
ROL(: = sop = 061s) -+ (COD t C O D  X 2Irotate)); 
ROLB(: = sop = 10618) -+ (CODb + CODb X 2(rotate)); 

ASRB(: = sop = 10628) -+ (CC,Db + Db/2); 
ASR(: = SOP = 0628) + (CC,D + D X 2); 

ASL(: = SOP = 0638) -+ (CC,D + D X 2); 
ASLB(: = SOP = 10638) -+ (CC,Db + Db X 2); 
ROT(: = SOP = 0648) -+ (COD + D X 2') ; 
ROTB(.: = sop = 10648) -+ ( C n D b  + D X 2') ; 
LSH(: = sop = 065,J -+ (CC,D t D X 28(logical)); 
LSHB(: = sop = 10658) + (CC,Db +- Db X 2'(logical]); 
ASH(: = SOP = 0668) + (CC,D + D X 2") ; 
ASHB(: = SOP = 10668) + (CC,Db + Db X 2'); 
NOR(: = sop = 067,) -+ (CC,D + normalize(D)); 

NORD(: = sop = 1067,J -+ (Db + normalize(Dd) ; 

SWAB(: = sop = 3) -+ (CC,D + D(7:0, 15:8)) 

(R[r'] t normalize,exponent(D)) ; 

R[r'] t normalize,exponent(D)) ; 

Logical Operations 
BIC(: = bop = 0100) -+ (CC,D t D + D A -,S); 
BICB(: = bop = 1100) -+ (CC,Db + Db V ,Sb); 
BIS(: = bop = 0101) + (CC,D +- D V S) ; 
BISB(: = bop = 1101) -+ (CC,Db + Db v Sb); 
BIT(: = bop = 0011) -+ (CC t D A S) ; 
BITB(: = bop = 1011) -+ (CC t Db A Sb); 

(add)  
(subtract) 
(word compare) 
(byte compare) 
(*multiply i f  D i s  a register then a 
double length operator) 

(*divide, i f  D is a register, then a 
remainder is  saved) 

(clear word) 
(clear byte) 
(complement word) 
(complement byte) 
(increment word) 
(increment byte) 
(decrement word) 
(decrement byte) 
(negate) 
(negate byte) 
(add the carry) 
(add to byte the carry) 
(subtract the carry) 
(subtract from byte the carry) 
(test) 
(test byte) 

(rotate right) 
(byte rotate right) 
(rotate left) 
(byte rotate left) 
(arithmetic shift right) 
(byte arithmetic shift right) 
(arithmetic shift left) 
(byte arithmetic shift left) 
(rotate) 
(byte rotate) 
(*logical shif t)  
(*byte logical shif t)  
(*arithmetic shif t)  
(*byte arithmetic shif t)  
(*normalize) 

(*normalize double) 

(swap bytes) 

(bit  clear) 
(byte bit clear) 
(bit  set) 
(byte bit set) 
(bit test under mask)  
(byte bit test under mask)  



The DEC PDP-11 675 

Branches and Subroutines Calling: PC t f ;  
JMP(: = SOP = OOO18) --+ (PC + D’); 
BR(: = brop = 0116) + (PC + PC + offset); 
BE&(: = brop = 0316) + (Z -+ (PC + PC + offset)); 
BNE(: = brop = 0216) + ( lZ -+ (PC + PC + offset)) ; 
BLT(: = brop = 0516) ---f (N @ V --+ (PC + PC + offset)); 
BGE(: = brop = 0416) + (N = V + (PC + PC + offset)); 
BLE(: = brop = 0716) + (2 V (N @ V) + (PC t PC + offset)); 
BGT(: = brop = OCi16) --+ (7 (Z V (N @ V)) + (PC e PC + offset)); 
BCS/BHIS(: = brop = 8716) -+ (C + ( P c  + PC + offset)); 

BCC/BLO(: = brop = 861s) -+ (,C + ( P c  t P c  + offset)) ; 
BLOS(: = brop = 831~) + (C A Z ---f (PC + PC + offset)); 
BHI(: = brop = 8Z16) + (( -,C V Z) + (PC + PC + offset)); 
BVS(: = brop = 851~) ---f (V --+ (PC + PC + offset)); 
BVC(: = brop = 8416) + ( lV + (PC t PC + offset)) ; 
BMT(: = brop = 8lU)  --+ (N + (PC + PC + offset)); 
BPL(: = brop = 801a) --+ (,N -+ (PC t PC + offset)) ; 
JSR(: = SOP = 00408) + ( 

SP t SP - 2; next 
MCSP] + Rcsr]; 
R[sr] t PC; 

PC t D); 

PC t RCdr]; 
RCdr] t MCSP]; 

RTS(: = i = 0002W8) + ( 

S P t S P +  2); 

Miscellaneous processor state modification : 

RTI(: = i = Z8) + (PC t MCSP]; 
SP t SP + 2 ;  next 
PS t MCSP]; 
S P t S P  + 2 ) ;  

H A L T ( : = i = O ) + ( R u n t O ) ;  
WAIT(: = i = 1) + (Wait + 1);  
TRAP(: = i = 3) --+ (SP t SP + 2; next 

MCSP] t PS; 
SP t SP + 2; next 
M[SP] t PC; 
PC M[348]; 
PS + MC123); 

EMT(: = brop - + ( 
SP c SP + 2; next 
M[SP] t PS; 
SP t SP + 2; next 
MCSP] t PC; 
PC + M[308]; 
PS + MC328-J) ; 

IOT(: = i = 4) + (see TRAP) 
RESET(: = i = 5) + (not described) 
OPERATE(: = i(5: 15) = 5) --+ ( 

i(4) + (CC e CC V i(3:O)); 
~ i ( 4 )  + (CC t CC A i(3:O))); 

end Instruction,execution 

( j u m p  unconditional) 
(branch unconditional) 
(equal to zero) 
(not equal to zero) 
(less than (zero)) 
(greater than or equal (zero)) 
(less than or equal (zero)) 
(less greater than (zero)) 
(carry set; higher or same (un- 

(carry clear; lower (unsigned)) 
(lower or same (unsigned)) 
(higher than (unsigned)) 
( OVerJEow) 
( n o  overfZow) 
(minus )  
(Plus) 
( j u m p  to subroutine by putting 
R[sr], PC on stack and loading 
RLsr] with PC, and going to sub- 
routine at D )  

signed)) 

(return from subroutine) 

(return from interrupt) 

( trap to M[S&] store status and 
PC) 

(enter new process) 

(emulator trap) 

( I / O  trap to M[208]) 
(reset to external devices) 
(condition code operate) 
(set codes) 
(clear codes) 


