
C.mmp-A multi-mini-processor*

by WILLIAM A. WULF and C. G. BELL

CarnegieMeUm University
Pittsburgh, Pennsylvania

INTRODUCTION AND MOTIVATION

In the Summer of 1971 a project was initiated a t CMU
to design the hardware and software for a multi-
processor computer system using minicomputer pro-
cessors (i.e., PDP-11's). This paper briefly describes an
overview (only) of the goals, design, and status of this
hardware/software complex, and indicates some of
the research problems raised and analytic problems
solved in the course of its construction.

Earlier in 1971 a study was performed to examine
the feasibility of a very large multiproce&or computer
for artificial intellighce research. This work, reported
in the proceedings paper by Bell and Freeman, had an
influence on the hardware structure. In some sense,
this work can be thought of as a feasibility study for
larger multiprocessor systems. Thus, the reader might
look a t the Bell and Freeman paper for general over-
view and potential, while this paper has more specific
details regarding implementation since it occurs later
and is concerned with an active project. It is recom-
mended that the two papers be read in sequence.

The following section contains requirements and
background information. The next section describes
the hardware structure. This section includes the
analysis of important problem in the hardware design:
interference due to multiple processors accessing a
common memory. The operating system philosophy,
and its structure is given together with a detailed anal-
ysis of one of the problems incurred in the design. One
problem is determining the optimum number of "locks"
which are in the scheduling primitives. The final section
discusses a few programming problems which may
arise because of the possibilities of parallel processing.

*This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-0107)
and is monitored by the Air Force Office of Scientific Research.

REQUIREMENTS

The CMU multiprocessor project is designed to
satisfy two requirements :

1. particular computation requirements of existing
research projects; and

2. research interest in computer structures.

The design may be viewed as attempting to satsify the
computational needs with a system that is conserva-
tive enough to ensure successful construction within a
two year period while first satisfying this constraint,
the system is to be a research vehicle for multiprocessor
systems with the ability to support a wide range of
investigations in computer design and systems pro-
gramming.

The range of computer science research a t CMU
(i.e., artificial intelligence, system programming, and
computer structures) constrains processing power, data
rates, and memory requirements, etc.

(1) The artificial intelligence research a t CMU
concerned with speech and vision imposes two
kinds of requirements. The first, common to
speech and vision, is that special high data rate,
real time interfaces are required to acquire data
from the external environment. The second more
stringent requirement, is real time processing for
the speech-understanding system. The forms of
parallel computation and intercommunication
in multiprocessor is a matter for intensive
investigation, but seems to be a fruitful approach
to achieve the necessary processing capability.

(2) There is also a significant effort in research on
operating systems and on understanding how
software systems are to be constructed. Research
in these areas has a strong empirical and ex-
perimental component, requiring the design
and construction of many sy~tems. The primary

766 Fall Joint Computer Conference, 1972

requiremmt of these systems is isolation, so
they can be used in a complctc4y idiosyncratic
way and be restructured in terms of software
from thc basic machine. These systems also
require access by multiple users and varying
amounts of secondary memory.

(3) Th iw is also research interest in using Register
Transfrr Modulw (RTM's) drvcloprd hew and
a t Digital Equipmrnt Corporation (Brll, Grason,
(4 al., 1972) and in production as the PDP-16
arc drsigned to assist in thc fabrication of hard-
ware/software systcms. A dedicated facility is
needed for the dwign and testing of experi-
mental system constructed of these modules.

TIMELIXESS OF MULTIPROCESSOR

We believe that to assemble a multiprocessor system
today rcquirm rcwarch on multiprocessors. Multi-
processor systclms (0tht.r than dual processor struc-
turps) have not bvcome current art. Possibly reasons
for this state of affairs are:

1. Thr absolutely high cost of proccwors and
primary mcmorics. A complcx multiprocc~ssor
systcm was simply beyond thc computational
rchalm of all but a few extraordinary users, in-
drpendcnt of the advantage.

2. The relativt4y high cost of processors in the
total system. An additional processor did not
improve the performance/cost ratio.

3. The unreliability and performance degradation of
operating system software,-providing a still
more complrx system structure-would be
futile.

4. The inability of technology to permit construc-
tion of the central switches required for such
structures due to low component density and
high cost.

5. The loss of performance in multiprocessors due
to memory access conflicts and switching delays.

6. The unknown problems of dividing tasks into
subtasks to be c.xecuted in parallel.

7. Tho problems of constructing programs for
execution in a parallel environment. The possi-
bility of parallel execution demands mechanisms
for controlling that parallelism and for handling
increased programming complexity.

In summary, the expense was prohibitive, even for
discovering what advantages of organization might
overcome any inherent dccrernents of performance.
However, we appear to have now entered a techno-

logical domain when many of the difficulties listed
above no longer hold so strongly:

1'. Providing we limit ourselves to multiprocessors
of minicomputers, the total system cost of
processors and primary mrmories are now within
the price range of a research and user facility.

2'. The procrssor is a smaller part of the total
system cost.

3'. Software reliability is now somewhat improved,
primarily because a large number of operating
systclms havc becn constructed.

4'. Current medium and large scale integrated
circuit technology enables the construction of
switches that do not have the large losses of the
older distributed decentralized switches (i.e.,
busses).

5'. Memory conflict is not high for the right balance
of processors, memories and switching system.

6'. There has been work on the problem of task
parallelism, ccntcred around the ILLIAC I V
and the CDC STAR. Other work on modular
programming [Krutar, 1971; Wulf, 19711 sug-
gests how subtasks can be executed in a pipeline.

7'. Mechanisms for controlling parallel execution,
fork-join (Conway, 1963), P and V (Dijkstra,
1968), have been extensively discussed in the
literature. Methodologies for constructing large
complex programs are emerging (Dijkstra, 1969,
Parnas, 1971).

In short, the price of experimentation appears rea-
sonable, given that there are requirements that appear
to be satisfied in a sufficiently direct and obvious way
by a proposed multiprocessor structure. Moreover,
there is a reasonable research base for the use of such
structures.

RESEARCH AREAS

The above state does not settle many issues about
multiprocessors, nor make its development routine.
The main areas of research are:

1. The multiprocessor hardware design which we
call the PMS structure (see Bell and Xewell,
1971). Few multiprocessors havc been built,
thus each one represents an important point in
design space.

2. The processor-memory interconnection (i.e.,
the switch design) especially with respect to
reliability.

C.mmp-A Multi-Mini-Processor 767

3. The configuration of computations on the multi-
processor. There are many processing structures
and little is known about when they are ap-
propriate and how to exploit them, especially
when not treated in the abstract but in the con-
text of an actual processing system:

Parallel processing: a task is broken into a
number of subtasks and assigned to separate
processors.
Pipeline processing: various independent
stages of the task are executed in parallel
(e.g., as in a co-routine structure).
Network processing: the computers operate
quasi-independently with intercommunication
(with various data rates and delay times).
Functional specialization: the processors have
either special capabilities or access to special
devices; the tasks must be shunted to pro-
cessors as in a job shop.
Multiprogramming: a task is only executed
by a single processor at a given time.
Independent p~seessing: a configurational
separation is achieved for varying amounts
of time, such that interaction is not possible
and thus doesn't have to be processed.

4. The decomposition of tasks for appropriate
computation. Detailed analysis and restructuring
of the algorithm appear to be required. The
speech-understanding system is one major
example which will be studied. I t is interesting
both from the multiprocessor and the speech
recognition viewpoints.

5. The operating system design and performance.
The basic operating system design must be
conservative, since it will run as a computation
facility, however it has substantial research
interest.

6. The measurement and analysis of performance
of the total system.

7. The achievement of reliable computation by
organizational schemes a t higher levels, such as
redundant computation.

THE HARDWARE STRUCTURE

This section will briefly describe the hardware design
without explicitly relating each part to the design con-
straints. The configuration is a conventional multi-
processor system. The structure is given in Figure 1.

There are two switches, Smp and Skp, each of which
jrovide intercommunication among two sets of com-

ponents. Smp allows each processor to communicate
with all primary memories (in this case core). Skp

where: ~ c / c e n t r a l processor; ~ p / p r i m a r ~ memory; ~ / terminals ;

Ks/slow device control (e . g . , for Teletype) ;

Kf/fast device control (e . g . , for d i s k) ;

~ c / c o n t r o l for clock, timer, interprocessor c m u n i c a t i o n

' ~ 0 t h switches have s t a t i c configuration control by manual and
program control

Figure I-Proposed CMU multiminiprocessor
computer/C.mmp

allows each processor (PC), to communicate with the
various controllers (K), which in turn manage the
secondary memories (Ms), and I/O devices trans-
ducers (T). These switches are under both processor
and manual control.

Each processor system is actually a complete com-
puter with its own local primary memory and con-
trollers for secondary memories and devices. Each
processor has a Data operations component, Dmap,
for translating addresses a t the processor into physical
memory addresses. The local memory serves both to
reduce the bandwidth requirements to the central
memory and to allow completely independent opera-
tion and off-line maintenance. Some of the specific
components shown in Figure 1 are :

K.clock: A central clock, K.clock, allows precise
time to be measured. A central time base is
broadcast to all processors for local interval
timing.

K.interrupt: Any processor is allowed to generate
an interrupt to any subset of the PC configura-
tion at any of several priority levels. Any pro-

768 Fall Joint Computer Conference, 1972

cessor may also cause any subset of the con-
figuration to be stopped and/or restarted. The
ability of a processor to interrupt, stop, or
restart another is under both program and
manual control. Thus, the console loading func-
tion is carried out via this mechanism.

Smp: This switch handles information transfers
between primary memory processors and I/O
devices. The switch has ports (i.e., connections)
for m busses for primary memories and p busses
for processors. Up to rnin(m,p) simultaneous
conversations possible via the cross-point ar-
rangement.

Smp can be set under programmed control or
via manual switches on an override basis to
provide different configurations. The control
of Smp can be by any of the processors, but one
processor is assigned the control.

Mp: The shared primary memory, Mp, consists
of (up to) 16 modules, each of (up to) 65k, 16 bit,
words. The initial memories being used have the
following relevant parameters : core technology;
each module is &way interleaved; access time is
250 nanoseconds; and cycle time is 650 nano-
seconds. An analysis of the performance of these
memories within the C.map configuration is
given in more detail below.

Skp: Skp allows one or more of k Unibusses (the
common bus for memory and i/o on an isolated
PDP-11 system) which have several slow, Ks
(e.g., teletypes, card readers), or fast con-
trollers, Kf, (e.g., disk, magnetic tape), to be
connected to one of p central processors. The k
IJnibusses for the controllers are connected to
the p processor Unibusses on a relatively long
term basis (e.g., fraction of a second to hours).
The main reasons for only allowing a long term,
but switchable, connection between the k
Unibusses and the processor is to avoid the
problem of having to decide dynamically which
of the p processors manage a particular control.
Like Smp, Skp may be controlled either by
program or manually.

PC: The processing elements, PC, are slightly
modified versions of the DEC PDP-11. (Any of
the PDP-11 models may be intermixed.)

Dmap: The Dmap is a Data operations component
which takes the addresses generated in the
processor and converts them to addresses to use
on the Memory and Unibusses emanating from
the Dmap. There are four sets of eight registers
in Dmap, enabling each of eight 4,096 word
blocks to be relocated in the large physical
memory. The size of the physical Mp is 220

words (221 bytes). Two bits in the processor,
together with the address type are used to
specify which of the four sets of mapping regis-
ters is to be used.

Dmap

The structure of the address map, is described below
and in Figure 2 together with its implications for two
kinds of programs: the user and the monitor programs.
For the user program, the conventional PDP-11 ad-
dressing structure is retained-except that a program
does not have access to the "i/o page," and hence the
full 16-bit address space refers to the shared primary
memory.

A PDP-11 program generates a 16-bit address, even
though the Unibus has 18-bit addressing capability.
In this scheme the additional two address bits are
obtained from two unused program status (PS) register
bits. (Note, this register is inaccessible to user pro-

ber'. 16-bit addre..

PDP-11
P

5-
6-

7 'dl.Pl.c-t

bat,k 00 [I -r--

bank

bank

bank

I register selection

--
I

ontrol
exteneion !

21-bit CMUibus Address
-format:

1 1 1 1 4 8 I
A ,\ A n

physical page number

reserved for expansion of phyaieal page n d e r

L (resemed)

Figure 2-Format of data in the relocation registers

C.mmp-A Multi-Mini-Processor 769

&rams.) These are two additional bits, provides four
addressing modes :

These addresses are always mapped, and
always refer to the shared, large, primary
memory.
All but 8 kw (kilo words) of this address
space is mapped as above. The 8 kw of this
space which is not mapped refers to the
private Unibus of each processor; 4 kw of
this space is for private (local) memory and
4 kw is used to access i/o devices attached
to the processor.

For mapped references, the mapping consists of using
the most significant five bits of the 18-bit address to
select one of 30 relocation registers, and replacing these
by the contents of the 8 low order bits of that register
yielding an overall 21-bit address. Alternatively, con-
sider that two bits of the PS select one of four banks
of relocation registers and the leftmost three bits of
the users (16-bit) address select one of the eight regis-
ters in this bank (six in bank three). A program may
(by appropriate monitor calls) alter the contents of
the relocation registers within that bank and thus alter
;s "instantaneous virtual memory9'-that is, the set

of directly addressable pages. The format of each of the
30 relocation registers is as also shown in Figure 2
where:

The 'written-into' bit is set (to 1) by the hard-
ware whenever a write operation is performed on
the specified page.
The 'write protect' bit, when set, will cause a
trap on (before) an attempted write operation
into the specified page.
The NXM, 'non-existent memory', when set,
will cause a trap on any attempted access to the
specified page. Note: this is not adequate for,
nor intended for, 'page fault' interruption.
The 8-bit 'physical page number' is the actual
relocation value.

THE MEMORY INTERFERENCE PROBLEM

One of the most crucial problems in the design of
this multiprocessor is that of the conflict of processor
requests for access to the shared memories.

Strecker (1970) gives closed form solutions for the
interference in terms of a defined quantity, the UER
,unit execution rate). The UER is, effectively, the rate
memory references and, for the PDP-11, is approxi-
mately twice the actual instruction execution rate.

(Although a single instruction may make from one to
five memory references, about two is the average.)
Neglecting i/o transfers*, assuming access requests to
memories a t
parameters :

t P

t,,tc

t, = t, - t,

random, and using the following mean

the time between the completion of one
memory request and the next request
the access time and cycle time for the
memories to be used
the rewrite time of the memory

Strecker gives the following relations:

t, = L: UER = (m/t,) (1 - (1 - l/m)p)

m 1 - (1 - l/m)p
t, < t,: UER = - X

t 1 - (1 - l/m)p

t, > t,: UER = (m/t,)(l - (1 - P,/m)p)

Various speed processors, various types of memories,
and various switch delays, td, can be studied by means
of these formulas. Switch delays effects are calculated
by adding to t, and t,, i.e., t,' = td + t,; and t,' =

t d + t,. For example, the following cases are given in
the attached graphs. The graphs show UER X lo6 as
a function of p for various parameters of the memories.
The two values of td shown correspond to the estimated
switch delay in two cable-length cases: 10' and 20'.
The t,,t, values correspond to six memory systems
which were considered. The value of t, is that for the
PDP-11 model 20.

Given data of the form in Figures 3 and 4 it is pos-
sible to obtain the cost effectiveness of various proces-
sor-memory configurations. An example of this
information for a particular memory configuration
(16 memories, t, = 400) and three different processors
(roughly corresponding to three models of the PDP-11
family) is plotted in Figure 5. Note that a small con-
figuration of five Pc.lls has a performance of 4.5 X lo6
accesses/second (UER). The cost of such a system is
approximately $375K, yielding a cost-effectiveness of
12. Replacing these five processors with the same
number of Pc.3'~ yields a UER of 15 X lo6 for about
$625K, or a cost-effectiveness of about 24. Following
this strategy provides a very cost-effective system
once a reasonably large number of processors are used.

* A simple argument indicates that i/o traffic is relatively
insignificant, and so has not been considered in these figures. For
example, transferring with four drums or 15 fixed head disks at
full rate is comparable to one PC.

770 Fall Joint Computer Conference, 1972

Processor: r - 700 na (PUP-11 model 201

n-ry: p - 1,5.10 ,..., 35
nvmbsr nnnory nodules - 8
rc,ta - (300,5),(400,250).(650,3501.

i900,3501.(1200.5001

td - 190,270

Figure 3-Performance for various memory-processor
configurations

In fact, in the range 15-30 processors the cost-ef-
fectiveness is relatively constant while the absolute
performance nearly doubles.

Unfortunately these studies of memory interference
assume a random distribution of memory references-
an assumption may be invalid when true parallel
processing is performed (notably if shared programs
are executed, as in the operating system). Several
approaches to predicting and preventing these con-
flicts are being studied:

Software page-placements

Better-than-random reference patterns may be
achieved by having the operating system page-place-
ment algorithms attempt to localize process' pages
within a single memory module. No results on this
approach have been obtained to date.

Switch, Smp, measurement

Schemes for dynamically measuring the Mp-PC
reference pattern are being considered. The most

accurate method under consideration is to associate
a small memory with each crosspoint intersection.
This can be constructed efficiently by having a memory
array for each of the m rows, since control is on a row
(per memory) basis. When each request for a particular
row is acknowledged, a 1 is added to the register cor-
responding to the procesor which gets the request.
These data could then serve as input to algorithms of
the type described under (1). Such a scheme has the
drawback of adding hardware (cost) to the switch, and
possibly lowering reliability. Since the performance
measures given earlier are quite good, even for large
numbers of processors, this approach does not seem
justified a t this time.

A cache

Since performance for all but shared programs may
approximate the random references assumption of
Strecker's analysis, special provision for these references
might be provided. The addition of a cache memory
between Dmap and Smp allows programs to migrate

Figure 4-Performance for various memory-processor
configurations

C.mmp-A Multi-Mini-Processor 771

-(I6 proce..or.; I6 ..lorlo.); cd: 190 ns; t c : 400)

ProC*..~r.:
pr .1 ; tp: 100 n.
k . 2 ; tp: 450 ns
pc.3; tp: 200 ".

specifically for multiprocessor environments. In par-
ticular, no systems have been built to support the
variety of process relations (parallel, pipeline, etc.)
envisioned for C.mmp. Moreover, there is a relative
lack of experience in organizing computations for
parallel execution. These facts have driven the operat-
ing system design to the following, hopefully conserva-
tive, position:

The operating system will consist of a "kernel"
and a "standard Extension." The kernel will
provide a set of mechanisms (tools) for building
an operating system, but no policies (e.g., no
scheduler, no file structure, no. . .). The standard
extension will implement an (easily modified or
replaced) set of "conventional" operating system
facilities (e.g., a scheduler, file system, . . .). The
kernel will support the (simultaneous) execution
of an (almost) arbitrary number of extensions.

/ // Under this strategy the variety of computational

Figure 5-Cost effectiveness (UER/$)

into the cache thereby diminishing the number of
requests for a single memory. This also provides faster
access since the Smp is avoided.

By introducing such a cache, however, a potential
problem is created regarding the validity of data since
it might be possible to have sixteen different values
of a single variable a t a given instant of time. A scheme
for avoiding this is to allow only information from
"read only" pages (especially instructions) to appear
in the cache. (In particular, the bit marked 'reserved'
in Figure 2 is used to signal that data from the page
may be placed into the cache.) Traces of PDP-11
programs executions indicate that a small cache (25&
512 words) will capture 70-90 percent of the eligible
references and 40-50 percent of all references. McCredie
(1972) has studied the effect of such a cache on overall
system performance both analytically and by simula-
tion. The results of these studies indicate an improve-
ment of 10-40 percent in overall system performance.

THE OPERATING SYSTEM

Although the technology of operating systems has
made significant progress in the past decade, there are
virtually no extant examples of systems constructed

--
structures is not a priori limited by the structure of
the underlying system. There are also potential hazards
in the kernel approach. One of them is the possibility
that extension in some (important) desired direction
is not possible because of irrevocable decision made too
early (though this problem is hardly unique to the
kernel approach). Another hazard is that intolerable
overhead might accrue by enforced multiple 'layering'
of extensions. Both analysis and simulated use indicated
that neither of these problems exist for the proposed
design.

The remainder of this section is devoted primarily
to a description of the kernel (called HYDRA).

I n considering what set of mechanisms (tools)
should be provided by an operating system kernel two
commonly held views of the essential nature of an
operating system are relevant:

-An operating system creates a '(virtual machine"
to support (user) programs by providing resources
and operations not present in the underlying
hardware (e.g., "files," file "read" and "write"
operations, etc.).

-An operating system is a resource (virtual and
physical) manager and allocator.

Note the emphasis in both views on resources; their
creation, management, and operations on them. From
these views we infer than an appropriate set of tools
for building an operating system must provide for:

-the creation of new virtual resources;
-the 'representation' of a new resource in terms of

existing ones;

772 Fall Joint Computer Conference, 1972

-the creation of operations on resources and/or
their representation; and

-protection (against illegal operations on a resource),
both

(a) uniformly over a class of resources; and
(b) with regard to specific instances of a re-

source.

This list serves as the design goals for HYDRA against
which the design is evaluated. .

Since the resources are central to the design, we de-
fine a suitable abstraction of these called an object;
objects are the basic entity of interest in HYDRA. An
object has a name, a type, and usually some other
(type dependent) information associated with it. The
name of every object is unique and is called its global
name. There is a supply of unique global names to last
over the system's total life. Thus, it is not possible for
two (or more) objects to have the same global name.

The set of extant objects is partitioned into equiva-
lence classed by their types. There is also an unlimited
supply of object types-new types may be created a t
will. The initial system includes a particular object
whose name is TYPE. New types are created by
creating an object whose type is TYPE; thus a class of
 object,^ of a particular type are "represented" by an
object of type TYPE. Suppose, for example, one
wished to create a new kind of virtual resource. This
would be done by creating an object (assume its name
is X) of type TYPE. The object X now serves as a
representative for all particular instances of resources
of this new variety; in particular, objects of type X
may now be created to represent the instances of the
new resource.

Operations are performed on objects by procedures."
A procedure is an object of type PROCTYPE. The
'right' to invoke a procedure on each particular object
is limited by both the type of object and the user's
access to it (see below).

During execution of a procedure there exists a local
name space, Ins, associated with it. The Ins is an object
which provides a mapping between local object names
(integers) accessible to the procedure and the actual
global names for objects. Each Ins entry may also
restrict the access rights (procedures that can be
invoked to perform operations on or with the object)
to a subset of those defined for that type of object.
Thus the Ins provides both mapping and protection
functions.

*Here we wish to invoke the reader's intuitive notion of a
'procedure' and its properties, e.g., a body of code, local storage,
a parameter mechanism, etc.

The only primitive operations in the system which
are not provided by procedures are CALL and RE-
TURN, whose functions are, respectively, to permit
entry to, and exit from, procedures. CALL also provides
parameter checking and establishes the Zns for the
called procedure.

To recap: The primitive notions in HYDRA are
those of an object, a global name, and a type. Some
specific types are TYPE, PROCTYPE, and LNS-
TYPE. Procedure objects may be invoked by a CALL
and are exited by a RETURN. Protection is provided
by: (1) restricting access to objects to those named in
the current Ins, (2) restricting the operations (pro-
cedures) which may be applied to an object to those
associated with that type of object, and (3) further
restricting the set of operations which may be applied
to any object named in an Ins to a subset of those in
(2).

Figure 6, gives a concrete example of this mecha-
nism. Suppose that a new type of object, a "bibli-
ography file," is created. Three specific operations are
permitted on these objects: updating, printing, and
erasing. Therefore three procedure objects UPDATE,
PRINT, and ERASE are created to perform these

Procedure io. 1

Figure &Example of LNS mapping and protection

C.mmp-A Multi-Mini-Processor 773

operations; no other operations are permitted on this
type of object. The situation in Figure 6 might exist
a t some instant. It shows (in the center) two pro-
cedures, A and B, and their associated Ins's-directed
arcs indicate the mapping function of the Ins and the
letters along an arc indicate permitted accesses. Here,
local name '1' of procedure A references a particular
bibliography object, B1; UPDATE and PRINT access
by A are permitted. The following information can be
observed from the diagram:*

-A.O -+ UPDATE
-B.O -+ UPDATE
-A.2 -+ PRINT

(and so on; note that A cannot name the ERASE
procedure nor bibliography object B2)

-A may: update and print B1; only print B2
-B may: only print B1; update, print, or erase B2;

update and print B3.

THE RELIABILITY PROBLEM

The existence in the physical system of multiple,
redundant resources suggests the possibility of highly
reliable operation-at least in the sense of continuing
to provide (degraded) service when some fraction of
the hardware is down. An explicit goal in the HYDRA
design is to provide commensurate reliability in the
software. Reliability may have two components:

(1) Correctness: The major reason for unreliability
in current software is that it is incorrect. How-
ever,
-the proposed design for the kernel is small

enough that a "constructive programming"
approach can be used effectively (Dijkstra)

-the design suggests natural modular decompo-
sition along the lines suggested by Parnas
(Parnas 1972)

-the coding is being done in a "systems imple-
mentation language" (Bliss/ll) (Wulf, et
al., 1970, 1971)

-the protection mechanism itself absolutely
guarantees that an erroneous or malicious
program cannot destroy information to which
it does not have legal access.

Therefore the correctness of the kernel must
be proven and its construction is proceeding in
a highly stylized form design to facilitate this.

* The notation X.n will be used to refer to the nth local name in
procedure X; "+" is to be read "maps onto" or "is a reference to."

(2) Malfunction: Even if the software is correct i t
is possible for the system to be unreliable, for
example, as the result of misexecution of correct
code by (perhaps intermittently) failing hard-
ware. This problem is compounded by both the
multiprocessor character of the system and the
kernel design.

Although a great deal of research has been done on
hardware reliability, (for example in connection with
computers for extended space missions and electronic
telephone switching systems), little has been done on
software reliability. Undoubtedly this situation has
resulted from the fact correctness (or lack of it) rather
than malfunction has been the primary cause of un-
reliable software.

Possibly some of the ideas from the work on hardware
reliability can be carried over to software; a few of
these are discussed below. It should be remembered
that there is a cost/effectiveness trade-off in each of
t h e s e a n increasing degree of reliability may be
achieved only a t an increased cost. A very high degree
of reliability appears expensive and probably un-
necessary in any case.

Redundancy

One of the common forms of fault detection is to
replicate a critical component and, a t appropriate
points, to verify that the components agree. This
might appear in several forms in software:

-Critical computations might be performed by two
distinct methods within a single processor and
their results compared

-The same code for a critical computation might
be performed by two distinct processors and their
results compared

-Multiple copies of critical data might be stored on
distinct devices and their contents compared.

Consistency

A less demanding (and expensive) form of fault de-
tection is to merely check the reasonableness of a
computation or data item value. A simple example is
for all lists to be stored in "circular, doubly-linked"
form since this permits a check that the predecessor
and successor of an item correctly point to the item.
Another example of the same kind is for critical items
to carry a "self-identification" which is checked before
any updates to the item are made.

774 Fall Joint Computer Conference, 1972

1 I 1 I I I I I 1 I I I I I I
I I I I I I I I I I 1 I I I I >

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N = number of processors

E (N) = mean
number in
critical
sections

5.0--

4.0

3.0

2.0

1.0

Figure 7-Mean response time for scheduling

A

--

--

--

--

Diagnostics

An even less demanding scheme is to attempt to as-
certain whether the hardware is functioning properly
before faults occur in critical places. This might be done
on the fly just before a critical computation is per-
formed, a t fixed intervals, or simply whenever the
processor is not occupied with other tasks.

THE LOCK PROBLEM

An interesting problem in the design of a multi-
processor operating system is scheduling and coordi-
nating the many, individual processors. In HYDRA
the information necessary to make these decisions is
represented in a shared data base and the program(s)
which make the decision may be executed on any of
the processors-and possibly on several processors

simultaneously. While one processor is accessing or
updating this shared information all other processors
must be prevented from accessing and/or changing it.
The act of protecting a data item is called "locking"
and that portion of a program which accesses a locked
item is called a "critical section."

A basic design problem in such a scheduler is to
determine the number of critical sections, S, that will
maximize system performance. At one extreme a
single lock could be used for the entire data base; a t
the other extreme each item could have a separate
lock. Since a finite time, L, is required to perform the
locking operations, the overhead due to this operation
is minimized for S = 1. However, if S = 1, the possi-
bility of several processors performing scheduling
operations simultaneously is precluded. Even though
the performance for each individual processor is de-
graded, total system performance may be improved
by choosing S > 1.

C.mmp-A Multi-Mini-Processor 775

A report by McCredie (McCredie, 1972) discusses
two analytic models which have been used to study
this problem; here we shall merely indicate the results.
Figure 7 illustrates the relationship predicted by one
of McCrediels models between the mean response time
to a scheduling request, the number of critical sections,
and the number of processors.

Mean response time increases with the number of
processors. For S constant, the increase in mean re-
sponse time is approximately linear, with respect to
N, until the system becomes congested. As N increases
beyond this point, the slope grows with increasing N.

The addition of one more critical section signifi-
cantly improves mean response, for higher values of
N, in both models. The additional locking overhead, L,
associated with each critical section degrades per-
formance slightly for small values of N. At these low
values of N, the rate of requests is so low that the extra
locking overhead is not compensated for by the po-
tential parallel utilization of critical sections.

The most interesting characteristic of these models
is the large performance improvement achieved by
the creation of a small number of additional critical
sections. The slight response time degradation for low
arrival rates indicates that an efficient design would
be the implementation of a few (S=2, 3 or 4) critical
sections. This choice would create an effective safety
valve. Whenever the load would increase, parallel
access to the data would occur and the shared sched-
uling information would not become a bottleneck.
The overhead a t low arrival rates is about 5 percent
percent and the improvement a t higher request rates
is approximately 50 percent.

Given the dramatic performance ratios predicted
by these modes, the HYDRA scheduler was designed
so that S lies in the range 2-7 (the exact value of S
depends upon the path through the scheduler).

PROGRAMMING ISSUES

Thus far both highly general and highly specific
aspects of the hardware and operating system design
of C.mmp have been described. These alone, however,
do not provide a complete computing environment in
which productive research can be performed. An
environment of files, editors, compilers, loaders, de-
bugging aids, etc., must be available. To some extent
existing PDP-11 software can and will be used to
supply these facilities. However, the special problems
and potentials of a multiprocessor preclude this from
being a totally appropriate set of facilities.

The potential of true parallel processing obviously

requires the introduction of language and system
facilities for creating and synchronizing sub-tasks.
Various proposals for these mechanisms have existed
for some time, such as fork-join, "P" and "V", and
they are not especially difficult to add to most existing
languages, given the right basic hardware. Parallelism
has a more profound effect on the programming en-
vironment, however, than the perturbations due to a
few language constructs. The primary impact of
parallelism is in the increase in complexity of a system
due to the possible interactions between its compo-
nents. The need is not merely for constructs to invoke
and control parallel programs, but for conceptual tools
dealing with the complexity of programs that can be
fabricated with these constructs.

In its role as a substrate for a number of rearch
projects, C.mmp has spawned a project to investigate
the conceptual tools necessary to deal with complex
programs. The premise of this research is that the
approach to building large complex programs, and
especially those involving psrallelism, is essentially
methodological in nature: the primitives, i.e., language
features, from which a program is built are not nearly
as important as the way in which i t is built. Two par-
ticular methodologies-"top-down design" or "struc-
tured programming" (Dijkstra, 1969) and "modular
decomposition" (Parnas, 1971) have been studied by
others and form starting points for this research.

While the solution to building large systems may
be methodological, not linguistic, in nature, one can
conceive of a programming environment, including a
language, whose structure facilitates and encourages
the use of such a methodology. Thus the context of
the research has been to define such a system as a
vehicle for making the methodology explicit. Although
they are clearly not independent, the language and
system issues can be divided for discussion.

Language issues

Most language development has concerned itself
with "convenience1'-providing mechanisms through
which a programmer may more conveniently express
computation. Language design has largely abdicated
responsibility for the programs which are synthesized
from the mechanisms it provides. Recently, however,
language designers have realized that a particular
construct, the general goto, oan be (mis)used to easily
synthesize "faulty" programs and a body of literature
has developed around t'he theoretical and practical
implications of its removing from programming lan-
guages (Wulf, 1971a).

776 Fall Joint Computer Conference, 1972

At the present stage of this research it is easier to
identify constructs which, in their full generality, can
be (mis) used to create faulty programs than to identify
forms for the essential features of these constructs
which cannot be easily misused. Other constructs axe:

Algol-like scope rules

The intent of scope rules in a language is to provide
protection. Algol-like scope rules fail to do this in two
ways. First, and most obviously, these rules do not
distinguish kinds of access; for example, "read-only"
access is not distinguished from "read-write" access.
Second, there is no natural way to prevent access to a
variable at block levels "inside" the one at which it is
declared.

Encoding

A common programming practice is to encode in-
formation, such as age, address, and place of birth, in
the available data types of a language, e.g., integers.
This is necessary, but leads to programs which are
difficult to modify and debug if the manipulation of
these encodings is distributed throughout a large pro-
gram.

Fixed representations

Most programming languages fix both syntactic
and run-time representations; they enforce distinc-
tions between macros and procedures, data and pro-
gram, etc., and they provide irrevocable representa-
tions of data structures, calling sequences, and storage
allocation. Fixed representations force programmers to
make decisions which might better be deferred and, oc-
casionally, to circumvent the fixed representation
(e.g., with in-line code).

SYSTEMS ISSUES

Programming should be viewed as a process, not a
timeless act. A language alone is inadequate to support
this process. Instead, a total system that supports all
aspects of the process is sought. Specifically, some
attributes of this system must be:

(a) To retain the constructive path in final and
intermediate versions of a program and to make
this path serve as a guide to the design, con-
struction, and understanding of the program.

For example, the source (possibly in its several
representations) corresponding to object code
should be recoverable for debugging purposes;
this must be true independent of the binding
time for that code.
To support execution of incomplete programs.
A consequence of some of the linguistic issues
discussed above is that decisions (i.e., code to
implement them) will be deferred as long as
possible. This must not preclude compilation
and testing of portions of a program which do
not depend on earlier decisions.
To integrate a file system into the constructive
process. In particular the file maintenance of the
system must have the responsibility of main-
taining the structure of programs, the cor-
respondence between different representations
of the same program, keeping track of cross-
references between files, distributing informa-
tion from modules to compilers, etc.

SUMMARY

We have attempted to outline the need and goals for
the multiprocessor computer system being constructed
a t CMU. The hardware and software structure were
presented in overview form, together with detailed
analysis of various critical parts. We believe that such
a system is one which will become important in the
future, simply because of the capabilities it provides
and the way in which i t utilizes technology.

ACKNOWLEDGMENT

A significant fraction of the faculty, students, and staff,
of the Department of Computer Science at CMU are
either directly or indirectly involved or have made
significant contributions to this project. It is as diffi-
cult to give them all full credit as i t would be incorrect
to assume the authors are the source of all ideas or
work reflected in this paper. Those most directly in-
volved have been :

Professors Allen Newell and Raj Reddy who
provided most of the initial motivation and served
in continuing review; Bill Broadley, the manager
of the engineering lab, who has designed and is
constructing the specialized hardware; Chuck
Pierson, who has responsibility for coordinating
the project; Ellis Cohen, Roy Levin, Bill Corwin,
and Fred Pollack who are programming the

C.mmp-A Multi-Mini-Processor 777

operating system; Anita Jones, whose insights lead
to much of the operating system philosophy;
Professor Jack McCredie who has developed
analytic models for the memory interference and
lock problems, and Professor Mary Shaw who is
developing the programming system described in
the last section.

REFERENCES

1 C G BELL R CADY H McFARLAND
B DELAGI J O'LAUGHLIN R NOONAN
W WULF
A new architecture for miniwmputers-The DEC PDP-11
SJCC 1970 pp 657-675

2 C G BELL P FREEMAN et a1
C.ai: A wmputing environment for A 1 Research-Overview,
P M S , and operating system considerations
Department of Computer Science Carnegie-Mellon
University May 1971

3 C G BELL J GRASON S MEGA
R VAN NAARDEN P WILLIAMS
The design, description and use of the DEC register transfer
modules (R T M)
IEEE Transaction on Computers May 1972

4 C G BELL A N HABERMANN J McCREDIE
R RUTLEDGE W WULF
Computer networks
Computer Science Research Review Carnegie-Mellon
University 1969

5 C G BELL A NEWELL
computer structures
McGraw-Hill Book Company 1971a

6 C G BELL A NEWELL
Possibilities for wmputer structures, 1971
FJCC 1971b

7 M CONWAY
A multiprocessor system design
Proceedings of the IFIP Congress Yugoslavia 1971a

8 DEC PDP-11 documents
Programmer Reference Manual and Unibus Interface
Manual

9 E DIJKSTRA
Cooperating sequential processes
In Programming Languages F Genuys (ed) Academic Press
1968

10 E DIJKSTRA
Structured programming
Software Engineering October 1969 Rome

11 R KRUTAR
Personal Communication 1971

12 D McCRACKEN G ROBERTSON
C.ai (P.L*)-a L* processor for C.ai
Department of Computer Science Carnegie-Mellon
University Pittsburgh 1971

13 J McCREDIE
Analytic models as aids in multiprocessor design
Department of Computer Science Carnegie-Mellon
University Pittsburgh 1972

14 D L PARNAS
On the criteria to be used in decomposing systems into modules
Department of Computer Science Report Carnegie-Mellon
University Pittsburgh 1971

15 W D STRECKER
An analysis of the instrudwn execution rate in certain
computing structures
PhD Dissertation Carnegie-Mellon University ARPA
Report 1971

16 W WULF
Programming without the goto
Proceedings of the IFIP Congress Yugoslavia 1971a

17 W WULF et a1
A software laboratory: Preliminary report
Department of Computer Science Carnegie-Mellon
University Pittsburgh 1971

18 W WULF et a1
Bliss reference manual
Department of Computer Science Report Carnegie-Mellon
University Pittsburgh 1971

19 W WULF D RUSSELL A N HABERMANN
Bliss: A language for systems programming
Communications of the ACM December 1971

