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INTRODUCTION AND MOTIVATION 

In  the Summer of 1971 a project was initiated a t  CMU 
to design the hardware and software for a multi- 
processor computer system using minicomputer pro- 
cessors (i.e., PDP-11's). This paper briefly describes an 
overview (only) of the goals, design, and status of this 
hardware/software complex, and indicates some of 
the research problems raised and analytic problems 
solved in the course of its construction. 

Earlier in 1971 a study was performed to examine 
the feasibility of a very large multiproce&or computer 
for artificial intellighce research. This work, reported 
in the proceedings paper by Bell and Freeman, had an 
influence on the hardware structure. In  some sense, 
this work can be thought of as a feasibility study for 
larger multiprocessor systems. Thus, the reader might 
look a t  the Bell and Freeman paper for general over- 
view and potential, while this paper has more specific 
details regarding implementation since it  occurs later 
and is concerned with an active project. It is recom- 
mended that the two papers be read in sequence. 

The following section contains requirements and 
background information. The next section describes 
the hardware structure. This section includes the 
analysis of important problem in the hardware design: 
interference due to multiple processors accessing a 
common memory. The operating system philosophy, 
and its structure is given together with a detailed anal- 
ysis of one of the problems incurred in the design. One 
problem is determining the optimum number of "locks" 
which are in the scheduling primitives. The final section 
discusses a few programming problems which may 
arise because of the possibilities of parallel processing. 

*This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F44620-70-0107) 
and is monitored by the Air Force Office of Scientific Research. 

REQUIREMENTS 

The CMU multiprocessor project is designed to 
satisfy two requirements : 

1. particular computation requirements of existing 
research projects; and 

2. research interest in computer structures. 

The design may be viewed as attempting to satsify the 
computational needs with a system that is conserva- 
tive enough to ensure successful construction within a 
two year period while first satisfying this constraint, 
the system is to be a research vehicle for multiprocessor 
systems with the ability to support a wide range of 
investigations in computer design and systems pro- 
gramming. 

The range of computer science research a t  CMU 
(i.e., artificial intelligence, system programming, and 
computer structures) constrains processing power, data 
rates, and memory requirements, etc. 

(1) The artificial intelligence research a t  CMU 
concerned with speech and vision imposes two 
kinds of requirements. The first, common to 
speech and vision, is that special high data rate, 
real time interfaces are required to acquire data 
from the external environment. The second more 
stringent requirement, is real time processing for 
the speech-understanding system. The forms of 
parallel computation and intercommunication 
in multiprocessor is a matter for intensive 
investigation, but seems to be a fruitful approach 
to achieve the necessary processing capability. 

(2) There is also a significant effort in research on 
operating systems and on understanding how 
software systems are to be constructed. Research 
in these areas has a strong empirical and ex- 
perimental component, requiring the design 
and construction of many sy~tems. The primary 
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requiremmt of these systems is isolation, so 
they can be used in a complctc4y idiosyncratic 
way and be restructured in terms of software 
from thc basic machine. These systems also 
require access by multiple users and varying 
amounts of secondary memory. 

(3) Th iw  is also research interest in using Register 
Transfrr Modulw (RTM's) drvcloprd hew and 
a t  Digital Equipmrnt Corporation (Brll, Grason, 
(4 al., 1972) and in production as the PDP-16 
arc drsigned to assist in thc fabrication of hard- 
ware/software systcms. A dedicated facility is 
needed for the dwign and testing of experi- 
mental system constructed of these modules. 

TIMELIXESS OF MULTIPROCESSOR 

We believe that to assemble a multiprocessor system 
today rcquirm rcwarch on multiprocessors. Multi- 
processor systclms (0tht.r than dual processor struc- 
turps) have not bvcome current art. Possibly reasons 
for this state of affairs are: 

1. Thr  absolutely high cost of proccwors and 
primary mcmorics. A complcx multiprocc~ssor 
systcm was simply beyond thc computational 
rchalm of all but a few extraordinary users, in- 
drpendcnt of the advantage. 

2. The relativt4y high cost of processors in the 
total system. An additional processor did not 
improve the performance/cost ratio. 

3. The unreliability and performance degradation of 
operating system software,-providing a still 
more complrx system structure-would be 
futile. 

4. The inability of technology to permit construc- 
tion of the central switches required for such 
structures due to low component density and 
high cost. 

5. The loss of performance in multiprocessors due 
to memory access conflicts and switching delays. 

6. The unknown problems of dividing tasks into 
subtasks to be c.xecuted in parallel. 

7. Tho problems of constructing programs for 
execution in a parallel environment. The possi- 
bility of parallel execution demands mechanisms 
for controlling that parallelism and for handling 
increased programming complexity. 

In  summary, the expense was prohibitive, even for 
discovering what advantages of organization might 
overcome any inherent dccrernents of performance. 
However, we appear to have now entered a techno- 

logical domain when many of the difficulties listed 
above no longer hold so strongly: 

1'. Providing we limit ourselves to multiprocessors 
of minicomputers, the total system cost of 
processors and primary mrmories are now within 
the price range of a research and user facility. 

2'. The procrssor is a smaller part of the total 
system cost. 

3'. Software reliability is now somewhat improved, 
primarily because a large number of operating 
systclms havc becn constructed. 

4'. Current medium and large scale integrated 
circuit technology enables the construction of 
switches that do not have the large losses of the 
older distributed decentralized switches (i.e., 
busses). 

5'. Memory conflict is not high for the right balance 
of processors, memories and switching system. 

6'. There has been work on the problem of task 
parallelism, ccntcred around the ILLIAC I V  
and the CDC STAR. Other work on modular 
programming [Krutar, 1971; Wulf, 19711 sug- 
gests how subtasks can be executed in a pipeline. 

7'. Mechanisms for controlling parallel execution, 
fork-join (Conway, 1963), P and V (Dijkstra, 
1968), have been extensively discussed in the 
literature. Methodologies for constructing large 
complex programs are emerging (Dijkstra, 1969, 
Parnas, 1971). 

In  short, the price of experimentation appears rea- 
sonable, given that there are requirements that appear 
to be satisfied in a sufficiently direct and obvious way 
by a proposed multiprocessor structure. Moreover, 
there is a reasonable research base for the use of such 
structures. 

RESEARCH AREAS 

The above state does not settle many issues about 
multiprocessors, nor make its development routine. 
The main areas of research are: 

1. The multiprocessor hardware design which we 
call the PMS structure (see Bell and Xewell, 
1971). Few multiprocessors havc been built, 
thus each one represents an important point in 
design space. 

2. The processor-memory interconnection (i.e., 
the switch design) especially with respect to 
reliability. 
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3. The configuration of computations on the multi- 
processor. There are many processing structures 
and little is known about when they are ap- 
propriate and how to exploit them, especially 
when not treated in the abstract but in the con- 
text of an actual processing system: 

Parallel processing: a task is broken into a 
number of subtasks and assigned to separate 
processors. 
Pipeline processing: various independent 
stages of the task are executed in parallel 
(e.g., as in a co-routine structure). 
Network processing: the computers operate 
quasi-independently with intercommunication 
(with various data rates and delay times). 
Functional specialization: the processors have 
either special capabilities or access to special 
devices; the tasks must be shunted to pro- 
cessors as in a job shop. 
Multiprogramming: a task is only executed 
by a single processor at  a given time. 
Independent p~seessing: a configurational 
separation is achieved for varying amounts 
of time, such that interaction is not possible 
and thus doesn't have to be processed. 

4. The decomposition of tasks for appropriate 
computation. Detailed analysis and restructuring 
of the algorithm appear to be required. The 
speech-understanding system is one major 
example which will be studied. I t  is interesting 
both from the multiprocessor and the speech 
recognition viewpoints. 

5. The operating system design and performance. 
The basic operating system design must be 
conservative, since it  will run as a computation 
facility, however it has substantial research 
interest. 

6. The measurement and analysis of performance 
of the total system. 

7. The achievement of reliable computation by 
organizational schemes a t  higher levels, such as 
redundant computation. 

THE HARDWARE STRUCTURE 

This section will briefly describe the hardware design 
without explicitly relating each part to the design con- 
straints. The configuration is a conventional multi- 
processor system. The structure is given in Figure 1. 

There are two switches, Smp and Skp, each of which 
jrovide intercommunication among two sets of com- 

ponents. Smp allows each processor to communicate 
with all primary memories (in this case core). Skp 

where: ~ c / c e n t r a l  processor; ~ p / p r i m a r ~  memory; ~ / terminals ;  

Ks/slow device control ( e . g . ,  for Teletype) ; 

Kf/fast device control ( e . g . ,  for d i s k ) ;  

~ c / c o n t r o l  for clock, timer, interprocessor c m u n i c a t i o n  

' ~ 0 t h  switches have s t a t i c  configuration control by manual and 
program control 

Figure I-Proposed CMU multiminiprocessor 
computer/C.mmp 

allows each processor (PC), to communicate with the 
various controllers (K), which in turn manage the 
secondary memories (Ms), and I/O devices trans- 
ducers (T). These switches are under both processor 
and manual control. 

Each processor system is actually a complete com- 
puter with its own local primary memory and con- 
trollers for secondary memories and devices. Each 
processor has a Data operations component, Dmap, 
for translating addresses a t  the processor into physical 
memory addresses. The local memory serves both to 
reduce the bandwidth requirements to the central 
memory and to allow completely independent opera- 
tion and off-line maintenance. Some of the specific 
components shown in Figure 1 are : 

K.clock: A central clock, K.clock, allows precise 
time to be measured. A central time base is 
broadcast to all processors for local interval 
timing. 

K.interrupt: Any processor is allowed to generate 
an interrupt to any subset of the PC configura- 
tion at  any of several priority levels. Any pro- 
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cessor may also cause any subset of the con- 
figuration to be stopped and/or restarted. The 
ability of a processor to interrupt, stop, or 
restart another is under both program and 
manual control. Thus, the console loading func- 
tion is carried out via this mechanism. 

Smp: This switch handles information transfers 
between primary memory processors and I/O 
devices. The switch has ports (i.e., connections) 
for m busses for primary memories and p busses 
for processors. Up to rnin(m,p) simultaneous 
conversations possible via the cross-point ar- 
rangement. 

Smp can be set under programmed control or 
via manual switches on an override basis to 
provide different configurations. The control 
of Smp can be by any of the processors, but one 
processor is assigned the control. 

Mp: The shared primary memory, Mp, consists 
of (up to) 16 modules, each of (up to) 65k, 16 bit, 
words. The initial memories being used have the 
following relevant parameters : core technology; 
each module is &way interleaved; access time is 
250 nanoseconds; and cycle time is 650 nano- 
seconds. An analysis of the performance of these 
memories within the C.map configuration is 
given in more detail below. 

Skp: Skp allows one or more of k Unibusses (the 
common bus for memory and i/o on an isolated 
PDP-11 system) which have several slow, Ks 
(e.g., teletypes, card readers), or fast con- 
trollers, Kf, (e.g., disk, magnetic tape), to be 
connected to one of p central processors. The k 
IJnibusses for the controllers are connected to 
the p processor Unibusses on a relatively long 
term basis (e.g., fraction of a second to hours). 
The main reasons for only allowing a long term, 
but switchable, connection between the k 
Unibusses and the processor is to avoid the 
problem of having to decide dynamically which 
of the p processors manage a particular control. 
Like Smp, Skp may be controlled either by 
program or manually. 

PC: The processing elements, PC, are slightly 
modified versions of the DEC PDP-11. (Any of 
the PDP-11 models may be intermixed.) 

Dmap: The Dmap is a Data operations component 
which takes the addresses generated in the 
processor and converts them to addresses to use 
on the Memory and Unibusses emanating from 
the Dmap. There are four sets of eight registers 
in Dmap, enabling each of eight 4,096 word 
blocks to be relocated in the large physical 
memory. The size of the physical Mp is 220 

words (221 bytes). Two bits in the processor, 
together with the address type are used to 
specify which of the four sets of mapping regis- 
ters is to be used. 

Dmap 

The structure of the address map, is described below 
and in Figure 2 together with its implications for two 
kinds of programs: the user and the monitor programs. 
For the user program, the conventional PDP-11 ad- 
dressing structure is retained-except that a program 
does not have access to the "i/o page," and hence the 
full 16-bit address space refers to the shared primary 
memory. 

A PDP-11 program generates a 16-bit address, even 
though the Unibus has 18-bit addressing capability. 
In  this scheme the additional two address bits are 
obtained from two unused program status (PS) register 
bits. (Note, this register is inaccessible to user pro- 

ber'. 16-bit addre.. 

PDP-11 
P 

5- 
6- 

7 'dl.Pl.c-t 

bat,k 00 [I -r-- 

bank 

bank 

bank 

I register selection 

-- 
I 

ontrol 
exteneion ! 

21-bit CMUibus Address 
-format: 

1 1 1 1  4 8 I 
A ,\ A n 

physical page number 

reserved for expansion of phyaieal page n d e r  

L (resemed) 

Figure 2-Format of data in the relocation registers 
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&rams.) These are two additional bits, provides four 
addressing modes : 

These addresses are always mapped, and 
always refer to the shared, large, primary 
memory. 
All but 8 kw (kilo words) of this address 
space is mapped as above. The 8 kw of this 
space which is not mapped refers to the 
private Unibus of each processor; 4 kw of 
this space is for private (local) memory and 
4 kw is used to access i/o devices attached 
to the processor. 

For mapped references, the mapping consists of using 
the most significant five bits of the 18-bit address to 
select one of 30 relocation registers, and replacing these 
by the contents of the 8 low order bits of that register 
yielding an overall 21-bit address. Alternatively, con- 
sider that two bits of the PS select one of four banks 
of relocation registers and the leftmost three bits of 
the users (16-bit) address select one of the eight regis- 
ters in this bank (six in bank three). A program may 
(by appropriate monitor calls) alter the contents of 
the relocation registers within that bank and thus alter 
;s "instantaneous virtual memory9'-that is, the set 

of directly addressable pages. The format of each of the 
30 relocation registers is as also shown in Figure 2 
where: 

The 'written-into' bit is set (to 1) by the hard- 
ware whenever a write operation is performed on 
the specified page. 
The 'write protect' bit, when set, will cause a 
trap on (before) an attempted write operation 
into the specified page. 
The NXM, 'non-existent memory', when set, 
will cause a trap on any attempted access to the 
specified page. Note: this is not adequate for, 
nor intended for, 'page fault' interruption. 
The 8-bit 'physical page number' is the actual 
relocation value. 

THE MEMORY INTERFERENCE PROBLEM 

One of the most crucial problems in the design of 
this multiprocessor is that of the conflict of processor 
requests for access to the shared memories. 

Strecker (1970) gives closed form solutions for the 
interference in terms of a defined quantity, the UER 
,unit execution rate). The UER is, effectively, the rate 
memory references and, for the PDP-11, is approxi- 
mately twice the actual instruction execution rate. 

(Although a single instruction may make from one to 
five memory references, about two is the average.) 
Neglecting i/o transfers*, assuming access requests to 
memories a t  
parameters : 

t P 

t,,tc 

t, = t, - t, 

random, and using the following mean 

the time between the completion of one 
memory request and the next request 
the access time and cycle time for the 
memories to be used 
the rewrite time of the memory 

Strecker gives the following relations: 

t, = L: UER = (m/t,) (1 - (1 - l/m)p) 

m 1 - (1 - l/m)p 
t, < t,: UER = - X 

t 1 - (1 - l/m)p 

t, > t,: UER = (m/t,)(l - (1 - P,/m)p) 

Various speed processors, various types of memories, 
and various switch delays, td, can be studied by means 
of these formulas. Switch delays effects are calculated 
by adding to t, and t,, i.e., t,' = td + t,; and t,' = 

t d  + t,. For example, the following cases are given in 
the attached graphs. The graphs show UER X lo6 as 
a function of p for various parameters of the memories. 
The two values of td  shown correspond to the estimated 
switch delay in two cable-length cases: 10' and 20'. 
The t,,t, values correspond to six memory systems 
which were considered. The value of t, is that for the 
PDP-11 model 20. 

Given data of the form in Figures 3 and 4 it is pos- 
sible to obtain the cost effectiveness of various proces- 
sor-memory configurations. An example of this 
information for a particular memory configuration 
(16 memories, t, = 400) and three different processors 
(roughly corresponding to three models of the PDP-11 
family) is plotted in Figure 5. Note that a small con- 
figuration of five Pc.lls has a performance of 4.5 X lo6 
accesses/second (UER). The cost of such a system is 
approximately $375K, yielding a cost-effectiveness of 
12. Replacing these five processors with the same 
number of Pc.3'~ yields a UER of 15 X lo6 for about 
$625K, or a cost-effectiveness of about 24. Following 
this strategy provides a very cost-effective system 
once a reasonably large number of processors are used. 

* A  simple argument indicates that i/o traffic is relatively 
insignificant, and so has not been considered in these figures. For 
example, transferring with four drums or 15 fixed head disks at 
full rate is comparable to one PC. 
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Processor: r - 700 na (PUP-11 model 201 

n-ry: p - 1,5.10 ,..., 35 
nvmbsr nnnory nodules - 8 
rc,ta - (300,5),(400,250).(650,3501. 

i900,3501.(1200.5001 

td - 190,270 

Figure 3-Performance for various memory-processor 
configurations 

In  fact, in the range 15-30 processors the cost-ef- 
fectiveness is relatively constant while the absolute 
performance nearly doubles. 

Unfortunately these studies of memory interference 
assume a random distribution of memory references- 
an assumption may be invalid when true parallel 
processing is performed (notably if shared programs 
are executed, as in the operating system). Several 
approaches to predicting and preventing these con- 
flicts are being studied: 

Software page-placements 

Better-than-random reference patterns may be 
achieved by having the operating system page-place- 
ment algorithms attempt to localize process' pages 
within a single memory module. No results on this 
approach have been obtained to date. 

Switch, Smp, measurement 

Schemes for dynamically measuring the Mp-PC 
reference pattern are being considered. The most 

accurate method under consideration is to associate 
a small memory with each crosspoint intersection. 
This can be constructed efficiently by having a memory 
array for each of the m rows, since control is on a row 
(per memory) basis. When each request for a particular 
row is acknowledged, a 1 is added to the register cor- 
responding to the procesor which gets the request. 
These data could then serve as input to algorithms of 
the type described under (1). Such a scheme has the 
drawback of adding hardware (cost) to the switch, and 
possibly lowering reliability. Since the performance 
measures given earlier are quite good, even for large 
numbers of processors, this approach does not seem 
justified a t  this time. 

A cache 

Since performance for all but shared programs may 
approximate the random references assumption of 
Strecker's analysis, special provision for these references 
might be provided. The addition of a cache memory 
between Dmap and Smp allows programs to migrate 

Figure 4-Performance for various memory-processor 
configurations 
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-(I6 proce..or.; I6 ..lorlo.); cd: 190 ns; t c :  400)  

ProC*..~r.: 
pr .1 ;  tp: 100 n. 
k . 2 ;  tp: 450 ns 
pc.3; tp: 200 ". 

specifically for multiprocessor environments. In  par- 
ticular, no systems have been built to support the 
variety of process relations (parallel, pipeline, etc.) 
envisioned for C.mmp. Moreover, there is a relative 
lack of experience in organizing computations for 
parallel execution. These facts have driven the operat- 
ing system design to the following, hopefully conserva- 
tive, position: 

The operating system will consist of a "kernel" 
and a "standard Extension." The kernel will 
provide a set of mechanisms (tools) for building 
an operating system, but no policies (e.g., no 
scheduler, no file structure, no. . .). The standard 
extension will implement an (easily modified or 
replaced) set of "conventional" operating system 
facilities (e.g., a scheduler, file system, . . .). The 
kernel will support the (simultaneous) execution 
of an (almost) arbitrary number of extensions. 

/ // Under this strategy the variety of computational 

Figure 5-Cost effectiveness (UER/$) 

into the cache thereby diminishing the number of 
requests for a single memory. This also provides faster 
access since the Smp is avoided. 

By introducing such a cache, however, a potential 
problem is created regarding the validity of data since 
it  might be possible to have sixteen different values 
of a single variable a t  a given instant of time. A scheme 
for avoiding this is to allow only information from 
"read only" pages (especially instructions) to appear 
in the cache. (In particular, the bit marked 'reserved' 
in Figure 2 is used to signal that data from the page 
may be placed into the cache.) Traces of PDP-11 
programs executions indicate that a small cache (25& 
512 words) will capture 70-90 percent of the eligible 
references and 40-50 percent of all references. McCredie 
(1972) has studied the effect of such a cache on overall 
system performance both analytically and by simula- 
tion. The results of these studies indicate an improve- 
ment of 10-40 percent in overall system performance. 

THE OPERATING SYSTEM 

Although the technology of operating systems has 
made significant progress in the past decade, there are 
virtually no extant examples of systems constructed 

-- 
structures is not a priori limited by the structure of 
the underlying system. There are also potential hazards 
in the kernel approach. One of them is the possibility 
that extension in some (important) desired direction 
is not possible because of irrevocable decision made too 
early (though this problem is hardly unique to the 
kernel approach). Another hazard is that intolerable 
overhead might accrue by enforced multiple 'layering' 
of extensions. Both analysis and simulated use indicated 
that neither of these problems exist for the proposed 
design. 

The remainder of this section is devoted primarily 
to a description of the kernel (called HYDRA). 

I n  considering what set of mechanisms (tools) 
should be provided by an operating system kernel two 
commonly held views of the essential nature of an 
operating system are relevant: 

-An operating system creates a '(virtual machine" 
to support (user) programs by providing resources 
and operations not present in the underlying 
hardware (e.g., "files," file "read" and "write" 
operations, etc.). 

-An operating system is a resource (virtual and 
physical) manager and allocator. 

Note the emphasis in both views on resources; their 
creation, management, and operations on them. From 
these views we infer than an appropriate set of tools 
for building an operating system must provide for: 

-the creation of new virtual resources; 
-the 'representation' of a new resource in terms of 

existing ones; 
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-the creation of operations on resources and/or 
their representation; and 

-protection (against illegal operations on a resource), 
both 

(a) uniformly over a class of resources; and 
(b) with regard to specific instances of a re- 

source. 

This list serves as the design goals for HYDRA against 
which the design is evaluated. . 

Since the resources are central to the design, we de- 
fine a suitable abstraction of these called an object; 
objects are the basic entity of interest in HYDRA. An 
object has a name, a type, and usually some other 
(type dependent) information associated with it. The 
name of every object is unique and is called its global 
name. There is a supply of unique global names to last 
over the system's total life. Thus, it is not possible for 
two (or more) objects to have the same global name. 

The set of extant objects is partitioned into equiva- 
lence classed by their types. There is also an unlimited 
supply of object types-new types may be created a t  
will. The initial system includes a particular object 
whose name is TYPE. New types are created by 
creating an object whose type is TYPE; thus a class of 
 object,^ of a particular type are "represented" by an 
object of type TYPE. Suppose, for example, one 
wished to create a new kind of virtual resource. This 
would be done by creating an object (assume its name 
is X) of type TYPE. The object X now serves as a 
representative for all particular instances of resources 
of this new variety; in particular, objects of type X 
may now be created to represent the instances of the 
new resource. 

Operations are performed on objects by procedures." 
A procedure is an object of type PROCTYPE. The 
'right' to invoke a procedure on each particular object 
is limited by both the type of object and the user's 
access to it (see below). 

During execution of a procedure there exists a local 
name space, Ins, associated with it. The Ins is an object 
which provides a mapping between local object names 
(integers) accessible to the procedure and the actual 
global names for objects. Each Ins entry may also 
restrict the access rights (procedures that can be 
invoked to perform operations on or with the object) 
to a subset of those defined for that type of object. 
Thus the Ins provides both mapping and protection 
functions. 

*Here we wish to invoke the reader's intuitive notion of a 
'procedure' and its properties, e.g., a body of code, local storage, 
a parameter mechanism, etc. 

The only primitive operations in the system which 
are not provided by procedures are CALL and RE- 
TURN, whose functions are, respectively, to permit 
entry to, and exit from, procedures. CALL also provides 
parameter checking and establishes the Zns for the 
called procedure. 

To recap: The primitive notions in HYDRA are 
those of an object, a global name, and a type. Some 
specific types are TYPE, PROCTYPE, and LNS- 
TYPE. Procedure objects may be invoked by a CALL 
and are exited by a RETURN. Protection is provided 
by: (1) restricting access to objects to those named in 
the current Ins, (2) restricting the operations (pro- 
cedures) which may be applied to an object to those 
associated with that type of object, and (3) further 
restricting the set of operations which may be applied 
to any object named in an Ins to a subset of those in 
(2). 

Figure 6, gives a concrete example of this mecha- 
nism. Suppose that a new type of object, a "bibli- 
ography file," is created. Three specific operations are 
permitted on these objects: updating, printing, and 
erasing. Therefore three procedure objects UPDATE, 
PRINT, and ERASE are created to perform these 

Procedure io. 1 

Figure &Example of LNS mapping and protection 
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operations; no other operations are permitted on this 
type of object. The situation in Figure 6 might exist 
a t  some instant. It shows (in the center) two pro- 
cedures, A and B, and their associated Ins's-directed 
arcs indicate the mapping function of the Ins and the 
letters along an arc indicate permitted accesses. Here, 
local name '1' of procedure A references a particular 
bibliography object, B1; UPDATE and PRINT access 
by A are permitted. The following information can be 
observed from the diagram:* 

-A.O -+ UPDATE 
-B.O -+ UPDATE 
-A.2 -+ PRINT 

(and so on; note that A cannot name the ERASE 
procedure nor bibliography object B2) 

-A may: update and print B1; only print B2 
-B may: only print B1; update, print, or erase B2; 

update and print B3. 

THE RELIABILITY PROBLEM 

The existence in the physical system of multiple, 
redundant resources suggests the possibility of highly 
reliable operation-at least in the sense of continuing 
to provide (degraded) service when some fraction of 
the hardware is down. An explicit goal in the HYDRA 
design is to provide commensurate reliability in the 
software. Reliability may have two components: 

(1) Correctness: The major reason for unreliability 
in current software is that it  is incorrect. How- 
ever, 
-the proposed design for the kernel is small 

enough that a "constructive programming" 
approach can be used effectively (Dijkstra) 

-the design suggests natural modular decompo- 
sition along the lines suggested by Parnas 
(Parnas 1972) 

-the coding is being done in a "systems imple- 
mentation language" (Bliss/ll) (Wulf, et 
al., 1970, 1971) 

-the protection mechanism itself absolutely 
guarantees that an erroneous or malicious 
program cannot destroy information to which 
it  does not have legal access. 

Therefore the correctness of the kernel must 
be proven and its construction is proceeding in 
a highly stylized form design to facilitate this. 

* The notation X.n will be used to refer to the nth local name in 
procedure X; "+" is to be read "maps onto" or "is a reference to." 

(2) Malfunction: Even if the software is correct i t  
is possible for the system to be unreliable, for 
example, as the result of misexecution of correct 
code by (perhaps intermittently) failing hard- 
ware. This problem is compounded by both the 
multiprocessor character of the system and the 
kernel design. 

Although a great deal of research has been done on 
hardware reliability, (for example in connection with 
computers for extended space missions and electronic 
telephone switching systems), little has been done on 
software reliability. Undoubtedly this situation has 
resulted from the fact correctness (or lack of it) rather 
than malfunction has been the primary cause of un- 
reliable software. 

Possibly some of the ideas from the work on hardware 
reliability can be carried over to software; a few of 
these are discussed below. It should be remembered 
that there is a cost/effectiveness trade-off in each of 
t h e s e a n  increasing degree of reliability may be 
achieved only a t  an increased cost. A very high degree 
of reliability appears expensive and probably un- 
necessary in any case. 

Redundancy 

One of the common forms of fault detection is to 
replicate a critical component and, a t  appropriate 
points, to verify that the components agree. This 
might appear in several forms in software: 

-Critical computations might be performed by two 
distinct methods within a single processor and 
their results compared 

-The same code for a critical computation might 
be performed by two distinct processors and their 
results compared 

-Multiple copies of critical data might be stored on 
distinct devices and their contents compared. 

Consistency 

A less demanding (and expensive) form of fault de- 
tection is to merely check the reasonableness of a 
computation or data item value. A simple example is 
for all lists to be stored in "circular, doubly-linked" 
form since this permits a check that the predecessor 
and successor of an item correctly point to the item. 
Another example of the same kind is for critical items 
to carry a "self-identification" which is checked before 
any updates to the item are made. 
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Diagnostics 

An even less demanding scheme is to attempt to as- 
certain whether the hardware is functioning properly 
before faults occur in critical places. This might be done 
on the fly just before a critical computation is per- 
formed, a t  fixed intervals, or simply whenever the 
processor is not occupied with other tasks. 

THE LOCK PROBLEM 

An interesting problem in the design of a multi- 
processor operating system is scheduling and coordi- 
nating the many, individual processors. In HYDRA 
the information necessary to make these decisions is 
represented in a shared data base and the program(s) 
which make the decision may be executed on any of 
the processors-and possibly on several processors 

simultaneously. While one processor is accessing or 
updating this shared information all other processors 
must be prevented from accessing and/or changing it. 
The act of protecting a data item is called "locking" 
and that portion of a program which accesses a locked 
item is called a "critical section." 

A basic design problem in such a scheduler is to 
determine the number of critical sections, S, that will 
maximize system performance. At one extreme a 
single lock could be used for the entire data base; a t  
the other extreme each item could have a separate 
lock. Since a finite time, L, is required to perform the 
locking operations, the overhead due to this operation 
is minimized for S = 1. However, if S = 1, the possi- 
bility of several processors performing scheduling 
operations simultaneously is precluded. Even though 
the performance for each individual processor is de- 
graded, total system performance may be improved 
by choosing S > 1. 
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A report by McCredie (McCredie, 1972) discusses 
two analytic models which have been used to study 
this problem; here we shall merely indicate the results. 
Figure 7 illustrates the relationship predicted by one 
of McCrediels models between the mean response time 
to a scheduling request, the number of critical sections, 
and the number of processors. 

Mean response time increases with the number of 
processors. For S constant, the increase in mean re- 
sponse time is approximately linear, with respect to 
N, until the system becomes congested. As N increases 
beyond this point, the slope grows with increasing N. 

The addition of one more critical section signifi- 
cantly improves mean response, for higher values of 
N, in both models. The additional locking overhead, L, 
associated with each critical section degrades per- 
formance slightly for small values of N. At these low 
values of N, the rate of requests is so low that the extra 
locking overhead is not compensated for by the po- 
tential parallel utilization of critical sections. 

The most interesting characteristic of these models 
is the large performance improvement achieved by 
the creation of a small number of additional critical 
sections. The slight response time degradation for low 
arrival rates indicates that an efficient design would 
be the implementation of a few (S=2, 3 or 4) critical 
sections. This choice would create an effective safety 
valve. Whenever the load would increase, parallel 
access to the data would occur and the shared sched- 
uling information would not become a bottleneck. 
The overhead a t  low arrival rates is about 5 percent 
percent and the improvement a t  higher request rates 
is approximately 50 percent. 

Given the dramatic performance ratios predicted 
by these modes, the HYDRA scheduler was designed 
so that S lies in the range 2-7 (the exact value of S 
depends upon the path through the scheduler). 

PROGRAMMING ISSUES 

Thus far both highly general and highly specific 
aspects of the hardware and operating system design 
of C.mmp have been described. These alone, however, 
do not provide a complete computing environment in 
which productive research can be performed. An 
environment of files, editors, compilers, loaders, de- 
bugging aids, etc., must be available. To some extent 
existing PDP-11 software can and will be used to 
supply these facilities. However, the special problems 
and potentials of a multiprocessor preclude this from 
being a totally appropriate set of facilities. 

The potential of true parallel processing obviously 

requires the introduction of language and system 
facilities for creating and synchronizing sub-tasks. 
Various proposals for these mechanisms have existed 
for some time, such as fork-join, "P" and "V", and 
they are not especially difficult to add to most existing 
languages, given the right basic hardware. Parallelism 
has a more profound effect on the programming en- 
vironment, however, than the perturbations due to a 
few language constructs. The primary impact of 
parallelism is in the increase in complexity of a system 
due to the possible interactions between its compo- 
nents. The need is not merely for constructs to invoke 
and control parallel programs, but for conceptual tools 
dealing with the complexity of programs that can be 
fabricated with these constructs. 

In  its role as a substrate for a number of rearch 
projects, C.mmp has spawned a project to investigate 
the conceptual tools necessary to deal with complex 
programs. The premise of this research is that the 
approach to building large complex programs, and 
especially those involving psrallelism, is essentially 
methodological in nature: the primitives, i.e., language 
features, from which a program is built are not nearly 
as important as the way in which i t  is built. Two par- 
ticular methodologies-"top-down design" or "struc- 
tured programming" (Dijkstra, 1969) and "modular 
decomposition" (Parnas, 1971) have been studied by 
others and form starting points for this research. 

While the solution to building large systems may 
be methodological, not linguistic, in nature, one can 
conceive of a programming environment, including a 
language, whose structure facilitates and encourages 
the use of such a methodology. Thus the context of 
the research has been to define such a system as a 
vehicle for making the methodology explicit. Although 
they are clearly not independent, the language and 
system issues can be divided for discussion. 

Language issues 

Most language development has concerned itself 
with "convenience1'-providing mechanisms through 
which a programmer may more conveniently express 
computation. Language design has largely abdicated 
responsibility for the programs which are synthesized 
from the mechanisms it provides. Recently, however, 
language designers have realized that a particular 
construct, the general goto, oan be (mis)used to easily 
synthesize "faulty" programs and a body of literature 
has developed around t'he theoretical and practical 
implications of its removing from programming lan- 
guages (Wulf, 1971a). 
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At the present stage of this research it is easier to 
identify constructs which, in their full generality, can 
be (mis) used to create faulty programs than to identify 
forms for the essential features of these constructs 
which cannot be easily misused. Other constructs axe: 

Algol-like scope rules 

The intent of scope rules in a language is to provide 
protection. Algol-like scope rules fail to do this in two 
ways. First, and most obviously, these rules do not 
distinguish kinds of access; for example, "read-only" 
access is not distinguished from "read-write" access. 
Second, there is no natural way to prevent access to a 
variable at  block levels "inside" the one at  which it is 
declared. 

Encoding 

A common programming practice is to encode in- 
formation, such as age, address, and place of birth, in 
the available data types of a language, e.g., integers. 
This is necessary, but leads to programs which are 
difficult to modify and debug if the manipulation of 
these encodings is distributed throughout a large pro- 
gram. 

Fixed representations 

Most programming languages fix both syntactic 
and run-time representations; they enforce distinc- 
tions between macros and procedures, data and pro- 
gram, etc., and they provide irrevocable representa- 
tions of data structures, calling sequences, and storage 
allocation. Fixed representations force programmers to 
make decisions which might better be deferred and, oc- 
casionally, to circumvent the fixed representation 
(e.g., with in-line code). 

SYSTEMS ISSUES 

Programming should be viewed as a process, not a 
timeless act. A language alone is inadequate to support 
this process. Instead, a total system that supports all 
aspects of the process is sought. Specifically, some 
attributes of this system must be: 

(a) To retain the constructive path in final and 
intermediate versions of a program and to make 
this path serve as a guide to the design, con- 
struction, and understanding of the program. 

For example, the source (possibly in its several 
representations) corresponding to object code 
should be recoverable for debugging purposes; 
this must be true independent of the binding 
time for that code. 
To support execution of incomplete programs. 
A consequence of some of the linguistic issues 
discussed above is that decisions (i.e., code to 
implement them) will be deferred as long as 
possible. This must not preclude compilation 
and testing of portions of a program which do 
not depend on earlier decisions. 
To integrate a file system into the constructive 
process. In  particular the file maintenance of the 
system must have the responsibility of main- 
taining the structure of programs, the cor- 
respondence between different representations 
of the same program, keeping track of cross- 
references between files, distributing informa- 
tion from modules to compilers, etc. 

SUMMARY 

We have attempted to outline the need and goals for 
the multiprocessor computer system being constructed 
a t  CMU. The hardware and software structure were 
presented in overview form, together with detailed 
analysis of various critical parts. We believe that such 
a system is one which will become important in the 
future, simply because of the capabilities it provides 
and the way in which i t  utilizes technology. 
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