Appeared in the Proceedings of

april 26-29,1971 Sponsored by COSINE
REGISTER TRANSFER MODULES (RTM)*
FOR HIGHER LEVEL DIGITAL SYSTEM DESIGN
C. G. Bell S. Mega
J. Grason R. Van Naarden
Carnegie-Mellon University P. Williams

Pittsburgh, Pennsylvania Digital Equipment Corp.

Maynard,Massachusetts

INTRODUCTION

Register transfer modules (called RIMs) are used as
the basis for digital systems logical design. RTMs
have the property of allowing a digital system to be
specified in either a register transfer flow chart
form, or a state diagram form which has complete
construction (wiring) information, thus completely
obviating the need for combinatorial and sequential
switching circuit design.

In the design of digital systems the problem formu-
latlon and the design solution are most likely
carried out at a register transfer concept level.
Texts on logical and computer design discuss the
register transfers as primitive components (e.g.,
Chu, 1970). Logical design simulators which use
the register transfer language have been written
and there have been attempts to carry out the de-
tailed sequential and combinatorial logic designs
from register transfer descriptions (e.g.,Friedman
and Yang, 1969). Clark (1967) at Washington Uni-
versity, St. Louls, has been developing and eval-
uvating a basic set of modules, called Macromodules,
to fulfill the need of the novice user who must
build very large systems. Despite the acknowledge~
ment that there are primitives based on register
transfer, there is yet to emerge a common set of
modules that are taken as primitive in the same
way we think of various flip-flop types and NAND
and NOR gates.

Register Transfer Modules (RTM) is one basic set
of modules for digital systems design at the
register transfer level; these modules have been
implemented by DEC.** The design of RIMs has been
influenced by many of the above approaches and
disciplines.

Several agpects of the RTM system are unique:

* Trademark, Digital Equipment Corporation

**% The modules were initially inspired by a grant
from NSF(GY-5160) for undergraduate educational
equipment to Carnegie-Mellon University.

Pardue }971 Symposium on Applications of Computers to Electrical Engineering

1. Digital system design is carried out entirely
in terms of the modules; combinatorial and sequen-
tial switching circuit design are not used. (The
process is akin to programming a sequential
computer).

2. The most abstract, and usually the only repre-
sentation of a given design has enough information
for constructing the system. This representation
ig a standard flow chart to specify the control
flow, coupled to a data part which holds the data
and carries out data operations.

3. The register transfer modules make extensive
ugse of MST circuitry and can use LSI circuitry to
provide even lower cost modules.

DESIGN CONSIDERATIONS

RIMs were not designed solely for teaching
register transfer level digital systems design.
The conflicting durability and low cost objectives
coupled with a relatively small market make an
educational market based design too difficult.
Instead, we tried to have a design which covers
more user applications (hence a larger market) to
reduce cost, and also to provide for more interest-
ing design solution possibilities. When possible,
the pedagogical aspects have been stressed, how-
ever.

The three problem classes for which the modules
were designed are:

Special purpose, computer-related, and educational
digital systems. The special purpose digital
systems are larger than 20 MSI circuits, but small-
er than a stored program computer (a typical RTM
system would have 4 ~ 100 control states, 1 v &
arithmetic units, and a small memory of 16 ~ 1000
words). Computer related applications range from
computer peripherals to the emulation of computers.

THE RTM SYSTEM

The RIM system consists of about 20 different
types of Register Transfer Modules (falling intc
four classes), and a method of interconnecting

the modules via a common bus which carries data
and timing interlock signals for the register
transfers. Some of the modules connect to the bus
in order to transfer data, and the remaining
modules "control" when data is to be transferred.

The module types are based on the PMS primitive
types of Bell and Newell (1971). PMS is the
information flow level of digital systems in which
information is taken as a commodity which is stcred
in memories (M), transmitted from place to place
over links (L), changed in form (encoded) by
transducers (T), routed to different places by
switches (8), controlled by components called
controls (K), and used to produce different infor-
mation by data-operations (D), and processors (P).
A collection of the PMS primitives usually forms a
computer (C), which is at the very least a P-M
pair.

The ISP (for Instruction Set Processor) language
(Bell and Newell, 1971) is used to define the
instructions of a machine in terms of the next
lowest level, 1.e., the register transfer level.
ISP as we use it here is a language for describing
the register transfer operations of the RTMs. We
use only the parts of ISP that are commonly known
by the digital systems engineer. Those readers
unfamiliar with register transfer languages of
this type are invited to examine either a program-
ming language (e.g., Fortran) or the ISP language.
The four basic module classes in RTM are:

1.-2. DM, for Data operation combined with Memory;
and M, for memory. Thege modules are what we com-
monly think of as being a digital system (or at
least the arithmetic unit). They are the register
transfer gating paths and combinatorial circuits
for the simple arithmetic and logical functions--
hence the D part (for data operations). The D
part carries out the evaluation of the righthand
side of an arithmetic expression* as in a program-
ming language in which an integer value is computed
e.g., A+ B, «A-B, «A@PB, « A+ 1.

The M (memory) part is just the registers (e.g., A,
B) which hold data between statements; these essen-—
tially correspond to the variables which are de-
clared in a program. The operations on memory are
usually just reading (+ M) and writing (M «). For
the current technology we always combine data
operations (D) with memory (M). There are, however,
modules with only an M part, e.g., core memory ar-
rays. All DM and M modules connect to a common
data bus (or busses). Types of DM and M modules
are: the general purpose arithmetic element, a
single transfer register, boolean flags (1 bit
registers), read-write memories, and read only
memories. The memories hold two's complement 8, 12,
or 16-bit integers.

- 3. K, for control. The K modules are responsible
for controlling the transfer of data among the
various registers by appropriately evoking opera-
tions by DM and M types. The K modules are ana-~
logous to the control structure of a program. The
K modules called K.simple control at which times
the various statements (the DM and M's) are evoked
{executed). The K.decision modules are used to
make decisions about which operations are to be
evoked next. The K.subroutine modules are used
to connect a sequence of operations together as a
subroutine. K.parallel-branch and K.parallel
merge modules synchronize control when there is
more than one operation taking place at a time.
Other control modules include: clocks, delays,
manual start keys, and serial merge of control
flow.

* An expression "lefthand side + righthand side"
is used to indicate the integer value of the right-
hand side being read (i.e., computed or taken as a
source) and placed in the register on the lefthand
side (i.e., a destination).

4. T, for Transducers. These modules provide an
interface to the environment outside RTM. These
include the Teletype interface, analog/digital
converters, lights, switches, and interfaces to
computers. These modules also connect to the com-
mon data bus.

There is not space here to describe all 20 RTM
module types in detail, so the details of the
modules will be introduced by giving the four
modules which are necessary for non-trivial digital
systems: K.simple, DM.gpa, K.decision, and K.bus.

| K(simple/s)

K.simple (Ks) is the basic module which evokes a
function consisting of a data operation and a
register transfer—in essence an arithmetic ex-
pression. When a Ks 1is evoked, it in turn evokes
the function, consisting of the data operation
followed by a register transfer, and when the
function is complete, Ks evokes the next K in the
control sequence. The diagram for Ks with its two
inputs and two outputs is shown in Figure 1.

K(decision/d)

K.decision (Kd) provides for the routing of control
flow based on the condition of a boolean input.

The diagram for Kd with its two inputs and two
outputs is shown in Figure 2. Each time a decision
control is evoked, it in turn evokes either of the
controls following it, depending on whether the
boolean input is true (a 1) or false (a 0).

DM (general purpose arithmetic/gpa)

The DMgpa allows arithmetic function results

(data operations) which have been performed on

its two registers A and B, to be written into
other registers (using the bus). Results can
also be transferred (written) into A and B

(A «; B<«). The data operations are: < A;

+ B; «mA; «+=B; « A+ B, «A-B, «~A-1,

“«A+ 1, «+Ax2, «AAB, «Av B; and « A @ B.
An input that evokes the function « (Result)/2

can be combined with the previous function outputs
to glve either + A/2, +« B/2, « (A+B)/2, etc.

Two boolean inputs, shift in <16,-1>, allow data
to be shifted into the left and righthand bits

on /2 and x2 operations, respectively. Bits of
registers A and B are available as boolean outputs.

K(bus sense and control module/bus)

Each independent data bus in the system requires

a centralized control module., It has a register,
Bus, which always contains the result of the last
register transfer that took place via the bus.

K bus carries out several functions: monitoring
register transfer operations; providing for single
step manual control for algorithm flow checkout

by the user; providing for sense lights (indica-
tors); providing for a word source of zero, i.e.,
« 0; forming boolean functions of the previous

ctranafer which are available after each control
step using the bus; power on initialization; manual
startup; and bus termination.

cample: Sum of Integers to N

A small system to sum the integers to N can be
built which uses the four aforementioned modules:
a DMgpa, Kbus, Ksimple, and a Kdecision. In addi-
tion, a switch register to enter N, and a manual
start control module to start the system are need-
ed. Suppose we have an integer, N, and we would
like to sum all the integers up to N, 1i.e.,
S=0+1+4+ 2+ ... +N. Instead of counting to
N, we start with N and count down to zero. The
data and control parts together give us the RTM
wiring diagram shown in Figure 3, with the data
part shown on the right side and the control part
shown on the left.

N is entered via a switch register. The control
sequence is initiated by a K.manual-start (A human
presses a key). This result, S and the variable

N are held in a general purpose arithmetic module,
DMgpa. The first control step reads T to register
N, (N < T). The second step initializes the sum,
S, (8§ « 0). The inner loop consists of the three
functiong: § « S+N; N « N-1; and a test for N=0,

Mechanical Structure

The modules are constructed using double sided
printed circuit boards of either 5" x 8 1/2"

(with 72 pins), or 2 1/2" x 4 1/4" (with 36 pins).
A few RTMs, e.g., the general purpose arithmetic
unit, are several of the above large boards; these
necessitate module interconnections at the top and
back of the printed circuit boards. Others, e.g.,
the simple control, are so small that several are
placed on a single printed circuit board. The bus
1s pre-wired on a printed circuit board mounting
panel containing connector pins. The boards plug
into the back of this panel and the control wiring
is done on the front using either '"'push on" or
"wire wrap'" connections. A medium sized RTM system
(e.g., a small, stored program computer) can be
constructed using a single 5 1/4" x 8 1/2" x 19"
mounting panel.

RESULTS

Numerous digital design problems have been 'bench-
marked" using the modules. These have ranged

from multipliers to large minicomputers. The
present modules were based on the experience
gained in implementing a small, special purpose
stored program computer. The process of specifying
the computer took approximately two hours. The
computer was wired, and aside from minor system
circuits problems, uncovered in RTM, the computer
operated essentially when power was applied, since
there were no logic errors. The computer was de-
signed from an actual application which had about
300 constants, 600 control steps and about 16
variables. If the 600 control steps had been

hard-wired, the system would have operated a

factor of ten faster, but would have been more
expensive and less flexible. The computer had only
24 simple and 16 decision controls. (By comparison
a DEC PDP-8 is roughly twice this size).

Because we have just acquired a module inventory,
we as yet have no experience in theilr physical
utilization in the laboratory. We have used them
in undergraduate and graduate courses for one year,
and students with basic logical design background
formulate and solve digital systems problems after
only a brief introduction. These students have
used RTMs to express large stored program general
and special purpose processors easily and clearly.
Practicing logical design engincers have more
difficulty in understanding how to solve digital
system design problems using RTMs, apparently
because they have not been taught any representa-
tion and design techniques higher than the logic
level.

CONCLUSIONS

There are methods (and modules) within the RTM
concept for achieving more parallelism, connecting
multiple bus structures and allowing more central
(perhaps "microprogrammed") control structures.
Simulators and other design aids have been written,
and the underlying theory must be further clarified
and expanded. We have avoided discussing these
peripheral questions in order to give the reader
an operational, closed view of RTMs, rather than
convince him of their open-endedness.

The concept of using high level buillding blocks
is not new, but we think this particular imp}emen—
tation of a set of simple blocks is quite useful
to digital systems education and design. The
many problem bench mark designs yield reasonably
consistent results: the modules can be applied
where there are between 4 and 100 control steps,
a few arithmetic registers, a small read-write
memory (100 words), and perhaps some read only
memory. The user need only have a good fundamen-
tal understanding of the use of flow charts, and
be familiar with the concept of registers and
register operations on data.

REFERENCES
Bell, C. G. and A. Newell, Computer Structures:

Readings and Examples, McGraw-Hill Book Co.,
New York, N.Y., 1971.

Chu, Y., Introduction to Computer Organization,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970.

Clark, W. A., "Macromodular Computer Systems',
SJCC 1967, pp. 335-336 (introduction of a set
of six papers, pp. 337-401 in same conference).

Friedman, T. D. and S. C. Yang, ''Methods Used in
an Automatic Logic Design Generator (ALERT)",
IEEE Traans. on Computers, vol, C-18, no. 7,

PP. 393-614, July 1969.

lfvoke this control/ev

Ks (name of function to be evoked)

evoke a function/evfn

B evoked function complete/evinc

N

evoke the next control function/evn

Figure 1. The Diagram for K.simple

boolean input

levoke this control/ev

Kd (boolean input condition being tested)

boolean is true/l/yes)

levnl/(evoke next if

Figure 2.

The Diagram for K.decision

!

evn0/(evoke next if boolean

is false/0/no)

Control Part Data Part
K.manual-start f¢—— human input to start process
begin
Ks “T T.switch-register
N <«T €]
N+
3 S« ‘
Ks DMgpa
S+ 0 <]
5 registers:
 EEE—— |
Ks <S+N S, N
S« S+ N <
N+«
. “N-1
Ks >
N«N-1 1
evoke function
| complete
Kd =
N Bus = 0 K bus
2 N =0 ¢ ' 1
lYes
end
Ks K.simple evoke module

Kd

K.decision module

Control flow and evoke wires

Bus for data wires

———fpomm- Boolean variable wires

Figure 3.

RTM digital system to take a value from a switch register input,
and to sum the integers to that value.

Bus

