
PMS: A Notation To
Describe Computer Structures

by Mario Barbacci, C. Gordon Bell
and Daniel Siewiorek

INTRODUCTION

The PMS notation was developed to describe the
physical structure of computer systems in terms of a small
number of elementary components for textbook (Bell and
Newell, 197 1).

There are seven basic component types, each
distinguished by the kinds of operations (function) it
performs:

Memory, M. A component that holds or stores
information (i.e., i-units) over time. Its operations are
reading i-units out of the memory, and writing i-units into
the memory. Each memory that holds more than a single
i-unit has associated with it an addressing system by means
of which particular i-units can be designated or selected. A
memory can also be considered as a switch to a number of
sub-memories. The i-units are not changed in any way by
being stored in a memory.

Link, L. A component that transfers information (i.e.,
i-units) from one place to another in a computer system. It
has fixed terminals. The operation is that of transmitting an
i-unit (or a sequence of them) from the component at one
terminal to the component at the other. Again, except for
the change in spatial position, there is no change of any sort
in the i-units.

Control, K. A component that evokes the operations of
other components in ihe system. All other components are
taken to consist of a set of discrete operations, each of
which - when evoked - accomplishes some discrete
transformation of state. With the exception of a processor,

MARCH 1973 19

P, all other components are essentially passive and require
some other active agent (a K) to set them into small
episodes of activity.

Switch, S. A component that constructs a link between
other components. Each switch has associated with it a set
of possible links, and its operations consist of setting some
of these links and breaking others.

Transducer, T. A component that changes the i-unit used
to encode a given meaning (i.e., a given referent). The
change may involve the medium used to encode the basic
bits (e.g., voltage levels to magnetic flux, or voltage levels to
holes in a paper card) or it may involve the structure of the
i-unit (e.g., bit-serial to bit-parallel). Note that T's are
meaning preserving, but not necessarily information
preserving (in number of bits), since the encodings of the
(invariant) meaning need not be equally optimal.

Data-operation, D. A component that produces i-units
with new meanings. It is this component that accomplishes
all the data operations, e.g., arithmetic, logic, shifting, etc.

Processor, P. A component that is capable of
interpreting a program in order to execute a sequence of
operations. It consists of a set of operations of the types
already mentioned - M, L, K, S, T and D - plus the
control necessary to obtain instructions from a memory
and interpret them as operations to be carried out.

Components of the seven types can be connected to
make stored program digital computers, abbreviated by C.
For instance, the classical configuration for a computer is:

Here PC indicates a central processor and Mp a primary
memory, namely, one which is directly accessible from a P
and holds the program for it. T (input/output device) is a
transducer connected to the external environment,
represented by X. (The colon-equals (:=) indicates that C is
the name of wha t follows to the right.)

The classic diagram had four components, since it
decomposed the PC into a control and an arithmetic unit:

where the heavy information carrying lines are for
instructions and their data, and the dotted lines signify
control. Diagrams such as these correspond roughly to the
conventional, simplified block diagrams of computers. Thy
following one from the MIT Whirlwind computer is one of
the earliest. Later we will diagram Whirlwind in PMS
notation.

Often logic operations were lumped with control,
instead of with data operations - but this no longer seems
to be an appropriate way to functionally decompose the
system.

Arithmetic element

Difference I Product Sum

Takes instructions
from storage then
directs all other

Storage

elements properly
(Positive or neg.)

Pushbuttons
I v1

~ T l p e ~ n p u t I I 2:::: 1 I output J preparation

Now we associate local control of each component with
the appropriate component to get:

data I
- D I X

instmeripm-- 1 ."I I
-I

where the heavy lines carry the information in which we are
interested, and the dotted lines carry information about
when to evoke operations on the respective components.
The heavy information carrying lines between K and Mp are
instructions. Now, suppressing the K's, then lumping the
processor state memory, the data operators, and the control
of the data, operators and processor state memory to form
a central processor, we again get:

Computer systems can be described in PMS at varying
levels of detail. For instance, we did not write in the links
(L's) as separate components. These would be of interest
only if the delays in transmission were significant to the
discussion at hand. Similarly, often the encoding of
information is unimportant; then there is no reason to show
the T's. The same statement holds for K's. Sometimes one
wants to show the locus of control, say when there is one
control for many components, as in a tape controller. But
often this is not of interest.

Components are themselves decomposable into other
components. Memories are composed of a switch (the
addressing switch) and a number of submemories. Thus a
memory is recursively defined as either a memory or a
switch to other memories. The decomposition stops with
the unit-memory, which is one that stores only a single
i-unit, hence requires no addressing. Likewise, a switch is

COMPUTER

often composed of a cascade of 1-way to n-way switches.
For example, the switch that addresses a word on a
multiple-headed disk might look like:

The first S(random) selects a specific Ms.disk drive unit;
the second S (random) is a switch with random addressing
that selects the head (the platter and side); S(1inear) is a
switch with linear accessing that selects the track; and
S(cyc1ic) is a switch with cyclic addressing that finally
selects the M(word) along the circular recurring track. Note
that the switches are realized by differing technologies and
thus have varying performance.

Various notational conventions designate specifications
for a component, e.g., Mp for a functional classification,
and S(cyc1ic) for a type of switch access function in the
case of rotating memory devices like drums. There are
many other additional specifications one wants to give - a
single general way of providing additional specifications is
used so that if X is a component, we can write:

to indicate that X is further specified by attribute al having
value vl , attribute a2 having value v2, etc. Each parameter
(as we call the pair a:v) is well defined independently of
what other parameters are given; hence there is no
significance td the order in which they are written, or the
number which have to be written.

The following PMS diagrams describe actual computer
systems at varying degrees of detail. The Whirlwind
computer is represented as:

T.console

K - s3:~- ~ (~ a p e r tape; reader1 punch)-

: K - ~ (' ~ l e x o w r i t e r ; 10 char/s)
2 2 K- T(CRT; d i sp lay ; area':s2 1 10 i n)-

K-T(1ight ; pen)+
I

K-T(fi1m; camera)* L

K-S-Ms JA:B; drum; td:16-17600 ps; [s ; 12 x 2048 W; 16 b/w

magnetic tape;
I

30 in /sec; (2+1 -
index) b/char; 100 char/in 1

'M (toggle switch; 8 ~ s / w ; 32 w; 16 b/w)
2 ~ c (~ ~ kop/s; 16 b/w; 1 instruction/w; 1 address/instruction; M.

processor state (3 w); technology; vacuum tube; 1948 1966)
%(fixed; from: PC: to: 8 K; concurrency: 1)
4 ~ p (# 0 : 1 core; 8 ps/w; 1024w; 16 b/w; taccess: 2 ~ s)

Note that most of the important attribute: value
characteristics about the machine are given. In addition, it
might be noted that the machine has only limited
processor/input-output concurrency due to the switching
structure.

At a somewhat higher level, PMS is useful for describing
the structure and the interaction of various larger
components in a computer network. The IBM two
computer, ASP system can be represented as:

r ~ (. 2 5 -. I) megabyte) 1
Pio.. . Pc('1BM sy;tem/360 Model 65, 75) I

Ms(disk). . . Ms(magnetic tape) . . . T

P ~ o . . .
I
Hp((.l -- . 5) megabyte) -
Pio.. . Pc('1BM ~ystem/360 Model 40 , 50)

i (card) . . . T i l i n e ; pr in ter) $(typewriter
I I I

Here, we have not described several of the important
characteristics such as the link bandwidth, and various
characteristics of the interconnected computer although we
could have.

Similarly, lower level features can be shown as in the
mapping structure between a processor and its memory:

translation) t L(address) t

M(content; 8 - 16 words)

Again, a diagram might also include the information rate
and width of the links, and the access time of the memory.

At a much lower level of detail, the PMS names
adequately and clearly describe the structures of registers
and switching circuits. Most combinational circuits
correspond'to data-operations D's or switches S's, and
combinational circuit design consists of making more
complex D's and S's. Sequential circuits take small amounts
of memory M, and proceed to build controls K's. At a
higher level more complex sequentially controlled P's are
formed from D's and K's. Finally, the special name of P's
and C's are used for particular structures.

Reference
[I] Bell, C. G . and A. Newell, Computer

Structures: Readings and Examples,
McGraw-Hill, 197 1.

MARCH 1973

Appendix 2

ISP: A Notation To Describe
A Computer's Instruction Sets

by Mario Barbacci, C. Gordon Bell,
and Daniel Siewiorek

The ISP (for Instruction Set Processor) notation was
developed for a text [Bell&Newell, 197 I] to precisely
describe the programming level of a computer in terms of
its Memory, Instruction Format, Data Types, Data
Operations, Interpreting a Specific Instruction Set.

The behavior of a processor is determined by the nature
and sequence of its operations. This sequence is given by a
set of bits in primary memory (a program) and a set of
interpretation rules (usually in the central processor). Thus,
if we specify the nature of the operations and the rules of
interpretation, the actual behavior of the processor depends
on the initial conditions and the particular program.

Computers are usually described in terms of the
following relatively fixed format:

Memory.- Physical components whch hold information
encoded in data.

Primary-memory.-Contains program and its data.

Processor-state.-Registers accessible to the program
- i.e. general registers and program location counter.

Console-state.- Lights and switches enabling
communication with the processor.

Input/Output-state.- Controller registers accessible
to the program.

Data-Types.- Described in terms of registers which
could carry information.

Data-Operations.- Defining operations that can be
carried out in terms of data-types.

Instruction-Format.- Specific instances of data-types.

Interpreter.- The mechanism of the processor which
fetches, decodes, and executes the instructions.

Instruction-Set.- Definition of the particular
instructions that the processor executes.

DEC PDP-8 ISP Description

Primary Memory, Mp
Memory \ Mp [0:7777 4 81 (0: 11) extended memory nol

included;

Processor State.Interrupt handling is not included

~ c & m u l a t o r \ ~ ~ (0: 1 1)
Link.bit\L Link bit, extension to

the Accu~ulator for
overflow and carry;

Program.counter\PC (0: 11)
Run I when PC is inter-

preting instructions or
"running";

Console State
Data.Switches (0: 11)

InputlOutput State
1O.pulse. 1
I 0 .pulse.:!
I 0 .pulse.4

Instruction Format
Instruction.register\IR (0: 11)

data entered via
console;

pulses to I/O devices;

0, direct; I , indirect
memory reference;
0 selects page 0; 1
selects this page;

selects an inputloutput
device
these 3 bits control the
selective
generation of pulses to
I/O devices;

current page number

I;zstruction Interpretation Process
Interpreter := (Run* PC operates while Run

bit is set to 1
IR i- Mp [PC] ; PC t PC+ 1 ; next instruction fetch
Execute.instruction; next instruction execution
Interpreter) interpretation cycle

loop
Effective Address Calculation Process
Direct.address\DA (0: 11) := (

(PO *DA :=OOPage.address); (7PO+DA := This.
page0 Page.address))

Effective.address\EA (0: 11) := (
(,IB*EA := DA); direct memory refer-

ence
(IB* indirect memory refer-

ence
(DA ? lO$8 ~ D A < 1 7 & 8 *

hip [DA] t Mp [DA] + 1); next auto indexing
EA := Mp [DA])); defines the effective

address
Instruction Set and Instruction Execution Process
Execute.instruction := (
(OP = o*

A c t AC A M ~ [E A]) ; logical and

COMPUTER

(OP= 1 " L O A C t LOAC +
Mp P A 1 1; two's complement add

(OP = 2 * Mp [EA] t Mp [EA]
+ 1; next index and skip if 0

(Mp [EA] =O *PC t PC t 1));
(OP = 3 =+Mp [EA] c AC; AC
+ 0); deposit and clear AC

(OP =4=+Mp [EA] +PC;
next PC t EA + 1); jump to subroutine

(OP = 5 +PC+ EA); jump
(OP = ~j*(IO.Pl.bit * microprogrammed to

1O.pulse. 1 t 1); next generate 3 pulses to an
(10.P2.bit =?rIO.pulse.2 110 device addressed by
t 1); next IO.select

(10.P4.bit *IO.pulse.4 t
1));

(OP = 7=+operate instruction. Does not include the EAE
option.

(- J R (3) *
(IR (4;6) = 1*AC+ 7AC);
(IR (4;6) = 2 * A C t 0);
(IR (4;6) = 3* AC t

7777 $8);
(IR (5;7) = 1 * L t 7L);
(IR (5;7) = 2 * L t 0) ;
(IR (5;7) = 3*L t l) ; next
(IR(8:lO) =2*LO AC
+ L O AC*2 {rotate});

(IR (8: lO) = 3*LOAC
t L 0 AC*4 {rotate));

(IR @: lo) = 4*LO AC
c L 0 AC s 2 {rotate});

(IR (8:lO) = 5 * L O AC
+ L O ACf4 {rotate)); next

(IR (11) * L O A C t
L 0 AC+ 1))

operate group I
complemen t AC
clear A C

set AC to ones
complement link bit
clear L
set L to I

rotate left

rotate twice left

rotate right

rotate twice righ t

increment AC, end of
group 1

(I 3) A I 1 * group 2
Skip.condition := (IR (5) A

AC (0)) v(IR (6hAC=O)
A(IR (7) AL) (IR (4)

AC t 0); clear A C
(Skip.condition @ IR (8) *PC
+PC + 1); next skip

(IR (9) *AC t AC v Data.
switches); next "read" console switches

(IR (lo)* R u n t 0)) ; halt, end of group 2
) end op operate
1 instruction end of

instruction execution
process

Memory
Memory components or information carriers are

hierarchically organized information structures, in which
each level consists of a number of subcarriers, all identically
organized. This decomposition eventually yields elementary
carriers that can not be further decomposed (e.g., a bit
carrier). Almost all information in computers is organized
in these terms, for instance, a memory consists of a number
of words, each of a number of characters, each of a number
of bits.

Carriers are defined in ISP by a name and description
of their structure, where the number of subcarriers at each
level of decomposition is given by bracketed lists of names
(if specific names are associated with the subcarrier) or

constants, much like array declarations in Algol, e.g.:

AC (0: 11) AC is the name of a carrier, a register
12 bits wide, named from 0 to 11 (from left to right).
The ":" or range operator is used to denote an
abbreviated list of elements.

For descriptive purposes there is an abbreviatian or
alias operator "\", which is used as a delimiter for a list of
names, all of which are thus made equivalent, e.g.:

Accumulator \ AC (0: 11) is a valid definition o f
the carrier, but now it can be referred to as either
"Accumulator" or "AC" indistinctly.

Memory \Mp [O:7777 $81 (0: 11) square brackets
are used to specify those dimensions where the
accessing is done through some "addressing" (switch-
ing) scheme. The memory consists of 4096 words,
each of 12 bits, named, from left to right: 0, 1, . . .,
11. Constants are, by default, decimal numbers, un-
less otherwise specified by the $ (base) operator.

Elements are specified by "names" (numbers do not
indicate relative position), therefore, it is legal to describe a
7 bit register as:

R (A;15;B;13;1 l;9: 10)

The only concession to the use of numbers as both
names and position indicators is by using the range (":")
operator, whereby, the abbreviated lists consist of the
bounds and all integers in between, with the implication
that these consecutive numbers also name consecutive
(from left to right) elements.

Carriers do not necessarily have bits as their most
elementary components; in fact, a carrier can be denoted as
a structure of elements each of which can assume values out
of some arbitrary alphabet (the alphabet for bits being "0"
and "1 "). This is denoted by appending, to the carrier
definition, a base (" 4 ") operator and a "size" (i.e. the size
of the alphabet) operand, e.g.:

A (0: 3) $ 16 is a register of 4 elements; each one
can assume as value a hexadecimal digit.

TR (0: 7) 4 3 a ternary register, 8 characters long,
the characters are named TR (0) ... TR (7) .

Data operators
Data operators produce bit patterns with new mean-

ing, they do the real processing by transforming infor-
mation. Data operators work on data types (which are
composed of a value or meaning and a representation or
encoding of information). Associated with the data types
we have carriers, the physical components used in storing
and transmitting the data types.

Data operations create information (instances of data
types) with new meaning, in which process they may des-
troy some existing information. The data operators take
their inputs (data type carriers), operate on the data and
present the result as output (the resulting data type car-
rier). Data operators are essentially intercarrier communi-
cation networks, whose complexity varies from a simple
transfer path to combinational networks to more complex
transformations involving sequences of simpler operations.

Data operators in ISP include the following classes:

Operation sequences
In ISP, concurrency of actions is the rule rather than

the exception, and it is reflected in the used of the ";" as a
delimiter for lists of concurrent actions. Sequencing is ex-
pressed by using the term "next" as a delimiter for lists of
sequential actions. Complex concurrent and sequential
activities can be described in terms of simpler activities
using "next", ";", "(", and ")" in a recursive way, e.g.:

I R c Mp [PC] single action

I R t M p [P C] ; P C c P C + 1 concurrent actions
I R t Mp [PC] ; PC t PC + 1; next Processor.state t 1

action sequence of two steps in parallel
followed by a third step

(IR cMp[PC] ; PC t PC + 1; next Processor.state
t l);(AC t 0; MQ t AC) concurrent action
sequences

(OP = 2 *Mp [EA] t Mp [EA] + 1 ; next (Mp [EA] =
O*PC c PC + 1)) conditional action sequences
can be defined in terms of conditional action
sequences. Parenthesis are used to indicate the
scope of the conditional activities.

Instruction expressions
Instructions are described by instruction expressions

(conditional actions) of the form:

condition *action-sequence

where the condition (a Boolean expression which is either
true or false) describes when the instruction will be evoked,
and the action sequence describes what transformations
take place between what memories.

Since all operations in a computer result in modi-
fications of bits in memories, each action in a sequence takes
the following form:

memory-expression t data-expression
the data-expression, patterned after standard mathematical
notation, describes the transformation of information (if
any) and the information pattern that is to be placed in the
memory described by the memory-expression, e.g.:

(OP = 2*AC c AC A Mp [EA]) If the contents of
carrier OP is equal to 2 then the action is
performed.

Modifying data operations

Expressions can be followed by a modifier, providing
more information about the meaning and interpretation of
the operands and operators. A modifier consists of a data
type name or an operation mode enclosed in curly brackets
" {" and ")",e.g.:

L OAC t LOAC * 2 {shift)
LOAC + LOAC * 2 {rotate)
A + B + C (1's complemenf)
A t B + C {2's complement)
A t ((B + C {l's complement)) * 2 {shift))

The instruction format

The instruction register, because of its important
function, has (usually) a more complicated structure than
most other internal registers (not physically, but by the
meaning assigned to its components). It is always divided in
fields, with proper names that provide information to the
programmer about their function during the interpretation
cycle. Thus, we have operation codes, addresses (with

modifiers: modes, bases, indexes), device selectors and
commands for i/o instructions, micro-commands for micro-
operation instruction, etc. This factorization of the register
bits is not unique to the instruction register, for instance we
may refer to the sign of the accumulator register by its own
name, or to fields in the processor state register (a register
containing a selected subset of the processor status infor-
mation).

These subfields are declared in terms of the main
register, but are used as if they were independent registers,
with their own structure and naming conventions, e.g.:

1nstruction.Register \ IR (0: 1 1)the instruction regis-
ter is declared as part of the processor state

0peration.code \ O P (0 : 2) := IR (0:2) the
operation code field consists of the first three
bits o f I R

1ndirect.address.bit \ IB := IR (3) the fourth bit
o f IR specifies the addressing mode

PageO.bit \ PO := IR (4) the fifth bit of IR
selects the page in memory

Page.address (0 :6) := IR (5: 11) the last seven bits
of IR define the page address

1O.select (0: 5) := IR (3: 8) the device selection
field. Subfields can overlap.

The interpretation cycle

During the execution of the program, some set of bits
(an instruction) is read from Mp to a memory within PC,
called the instruction register. This set of bits then deter-
mines the immediately following sequence of operations.
After this sequence has occurred, the next instruction to be
executed is determined and obtained, and the entire cycle
repeats itself. This interpretation cycle is performed by a
part of the processor called the interpreter. The effect of
each instruction can be expressed entirely in terms of the
information stored in memories at the end of the cycle
(plus any changes made to the outside world).

During execution, operations may have their own
internal states, as sequential circuits, which are not repre-
sented as bits in memory. But at the end of the cycle,
whatever effect is to be carried on to a later time has been
staticized in bits of some memory.

This modularization of the description allows the
designer to divide the processor in conceptually in-
dependent units (the actual hardware may or may not be
structured in that way).

1nstruction.Interpreter := (Run* Fetch; next In-
s t r u c tion.Execution; next Instruction.
Interpreter
) this sequence activates the Fetch and Instruc-
tion.Execution processes and loops i.e. the
Interpretation cycle

Fetch := (IR t Mp [PC] ; PC c PC + 1) the instruc-
tion fetch process

1nstruction.Execution := (
(OP=O*. . . .);

.
(OP = 7*. . . .)
); defines each instruction in terms of the
operation code to which it responds.

$9

