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The Description and Use of Register- 
Transfer Modules (RTM's)@ 

Abstract-This note describes a set of register-transfer modules 
(RTM's) that are used as a basis for digital systems design. RTM's allow 
digital systems to be specified in a flow chart form with complete con- 
struction (wiring) information, thus obviating combinational and sequen- 
tial switching circuit theory based design. The modules make extensive 
use of integrated circuitry. 

The note briefly describes the class of problems that RTM's can be 
used to solve, together with some of the module design decisions. The 
most important RTM's are described from the user's viewpoint, and two 
example designs are given. 

Index Term-Asynchronous logic, computer emulation, digital system 
design, flow charts, logical design, LSI, macro logic, register transfer. 

In the design of digital systems (e.g., computers) the 
problem formulation and the design solution are most 
likely carried out at a register-transfer concept level. Early 
and recent texts on logical and computer design discuss the 
register transfers as primitive components, e.g., Bartee et al. 
[ I ]  and Chu [2]. Logical design simulators that use a 
register-transfer language have been written and there have 
been several attempts to carry out detailed sequential and 
combinational logic designs from register-transfer descrip- 
tions, e.g., Friedman and Yang 131. Despite the acknowledg- 
ment that there are primitives based on register transfers, 
there is yet to emerge a common set of modules that are 
taken as primitive in the same way we think of various flip- 
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flop types and NAND and NOR gates. However, Clark [4] at 
Washington University, St. Louis, Mo., has been develop- 
ing and evaluating such a basic set of modules, called macro- 
modules. 

Register-transfer modules are our first attempt at provid- 
ing a basic set of modules for high-level digital systems de- 
sign. These modules have been implemented by the Digital 
Equipment Corporation (DEC). The design of RTM's has 
been influenced by many of the above approaches and dis- 
ciplines, and by programming methods. This note presents 
the general problem RTM's are trying to solve, the factors 
constraining their design, a brief description of the more im- 
portant modules from a user's point of view, and two ex- 
amples of their use. 

Several aspects of the RTM system are important. 
1) Digital system design is carried out entirely in terms of 

the modules; combinational and sequential switching circuit 
design are not used. (The process is akin to programming a 
sequential computer.) Design time is significantly less than 
with conventional logical design. 

2) The most abstract, and usually the only representation 
of a given design, has enough information for constructing 
the system. This representation is a standard flow chart to 
specify the control flow, coupled to a data part that holds 
the data and carries out data operations. 

3) The register-transfer modules make extensive use of 
MSI circuitry and can use LSI circuitry to provide even lower 
cost modules. 

The three problem classes for which the modules were de- 
signed are: special-purpose, computer-related, and educa- 
tional digital systems. Although the initial motivation for 
the modules was for education, they were not designed solely 
for this purpose. The goals for educational use place too 
many constraints on the design. The main influence of the 
educational market has been to clarify the pedagogical na- 
ture; hence, the description of systems is made easy. The 



TABLE I 

BASIC RT DESIGN DECISIONS 

Logic: TTL (acceptable for speed and noise immunity; low cost). 

packaging: Printed circuit boards of 5" x 82' or 2 2  x 8 2  with 72 
or 36 pins (DEC compatible). 

Intermediate connection: pre-wired busses; wirewrap and push-on 
connections over wirewrap pins. 

Logic interconnection rules: One kind of control signal and data bur. 
Very small number of rules compared to ic use. 

Problem size: 4 -100 control steps; 1 - 4  arithmetic registers; 
16 -100 variables; possibly read-only memory. 

Word length: 8, 12 and 16-bit (present de facto standard - can be 
extended). 

Universality and extendability: The modules aren't a panacea. m e r e  
are provisions for escape to: regular integrated circuits, standard 
DEC modules, and DEC computers (and their components). 

Selection of primitives: Basic register, bus interconnection struc- 
ture and data representation were first determined. The operations 
which formed a complete set for the data representation were then 
specified. With this basic module set, designs were carried out for 
benchmark problems and design iteration occurred. 

Notations: PMS and ISP of Bell and Newell [7 ] .  

Automatic (algorithmic) mapping of algorithm into hardware: The 
basic RT design archetype representation is a flow chart. The reg- 
ister transfer operations are expressed in the ISP language. 

Parallelism and speed: Provision for multiple busses; the modules are 
asynchronous. ( m e  application classes put relatively low weight on 
speed.) For teaching purposes parallelism is an important principle. 
(A decision to use a bus, and thereby limit parallelism to the number 
of busses was made for both cost andsim~licitv reasons.) 

special-purpose digital systems are larger than 20 MSI cir- 
cuits, but smaller than a stored-program computer (a typical 
RTM system would have 4-100 control states, 1-4 arith- 
metic units, and a small memory of 16-1000 words). Com- 
puter-related applications range from computer peripherals 
to the emulation of computers. 

We make no attempt to show that the modules are an 
optimum set, according to an objective function. Because of 
the elementary nature of the control and data operations, 
the set is sufficient to construct digital systems. Table I 
shows the important design variables for RTM's, together 
with many of the constraints. Their design is described in [ S ] .  

THE RTM SYSTEM 

The RTM system consists of about 20 different modules 
and a method of interconnecting modules via a common bus 
that carries data and timing interlock signals for the register 
transfers. Some of the modules (DM, T, and M types) con- 
nect to the bus in order to transfer data, and the remaining 
modules (K type) "control7' when data are to be transferred. 
The module name types are based on the structure primi- 
tive types of Bell and Newell 161, [7]. 

A register-transfer language, ISP (instruction set processor 
161, [7]), is used to define the register-transfer operations of 
the RTM's. Here we use only the parts of ISP that are com- 
monly known by the digital systems engineer and are similar 
to a programming language (e.g., Fortran). The four main 
module types are as follows. 

DM-Type (Data Operation Combined with Memory) 

These modules are what we commonly think of as being 
a digital system (or at least the arithmetic unit). They are 
the register-transfer gating paths and combinational circuits 

for the simple arithmetic and logical functions-hence the 
D part (for data operations). The D part carries out the 
evaluation of the right-hand side of an arithmetic expression 
as in a programming language in which an integer value is 
computed prior to storing, e g ,  t A +  B, +A- B, +A@ B, 
t A + 1 .  Thus, an expression "left-hand sidetright-hand 
side" (e.g., H t C + D )  is used to indicate the integer value 
of the right-hand side being read and placed in the register 
on the left-hand side. 

M-Type (Memory) 

The M (memory) part is just the registers (e.g., A, B) that 
hold data between statements; these essentially correspond 
to the variables that are declared in a program. The opera- 
tions on memory are usually reading ( t M )  and writing 
( M t ) .  Types of DM and M modules are the general- 
purpose arithmetic unit, a single-transfer register, Boolean 
flags (I-bit registers), READ-WRITE memories, and READ-ONLY 

memories. The memories hold two's complement 8, 12, or 
16-bit integers. 

K-Type (Control) 

The K modules are responsible for controlling the trans- 
fer of data among the various registers by appropriately 
evoking operations by DM and M types. The K modules are 
analogous to the control structure of a program. The K 
modules called K.evoke control the times when the vari- 
ous operations of the DM'S and M's are evoked (executed). 
The K.branch modules are used to make decisions about 
which operations are to be evoked next. The Ksubroutine 
modules are used to connect a sequence of operations to- 
gether as a subroutme. Kserial-merge allows control flow 
to merge into a single control flow when any flow input is 
present. K.paralle1-branch and K.paralle1-merge modules 
synchronize control where there is more than one operation 
taking place at a time. Other control modules include clocks, 
delays, and manual start keys. 

I 

T-Type (Transducers) 

These modules provide an interface to the environment 
outside RTM. These include the Teletype interface, analog/ 
digital converters, lights, switches, and interfaces to com- 
puters. These modules also connect to the common data bus. 

The details of the modules will be introduced by giving 
the four modules that are necessary for nontrivial digital 
systems: K.evoke, DM.gpa, K.branch, and K.bus. 

K.evoke (Ke) is the basic module that evokes a function 
consisting of a data operation and a register transfer-in 
essence an arithmetic expression. When a Ke is evoked, it 
in turn evokes the function, consisting of the data operation 
followed by a register transfer, and when the function is 
complete, Ke evokes the next K in  the control sequence. The 
diagram for Ke with its two inputs and two outputs is shown 
in Fig. 1. In terms of a finite state machine, Ke is a state 
with the ability to evoke an output action and then make a 
transition to another state. K.evoke is as follows. 
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Fig. 1. Diagram for the control module K.evoke. 
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Fig. 2. Diagram for the control module K.branch. 
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K(Branch) 

K.branch (Kb) provides for the routing of control flow 
based on the condition of a Boolean input. The diagram for 
Kb with its two inputs and two outputs is shown in Fig. 2. 
Each time a branch control is evoked, it in turn evokes 
either of the controls following it, depending on whether the 
Boolean input is true (a 1) or false (a 0). In terms of a finite 
state machine, Kb is a state with the capability of going to 
either of two next states, depending on a Boolean input. 
K.branch is as follows. 
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DM(Genera1 Purpose Arithmetic/gpa) 

The DM.gpa allows arithmetic function results (data 
operations) that have been performed on its two registers 
A and B to be written into other registers (using the bus). 
Results can also be transferred (written) into A and B 
( A t ;  B t ) .  The data operations are: +-A, t B ,  t1 A, 
+1B,+A+B,tA-B,+A-1,+-A+1,tAX2,tAAB, 
t A V B ,  and t A @ B .  An input that evokes the function 
t(Result)/2 can be combined with the previous function 
outputs to give t A / 2 ,  t B / 2 ,  +(A+B)/2, etc. Two Boolean 
inputs, shift in (16, - l), allow data to be shifted into the 
left- and right-hand bits on /2 and X2  operations, respec- 
tively. Bits of registers A and B are available as Boolean 
outputs. 

K(Bus Sense and Control Module/Bus) 

Each independent data bus in the system requires a 
centralized control module. It has a register, Bus, that always 
contains the result of the last register transfer that took place 
via the bus. K.bus carries out several functions: monitoring 
register-transfer operations; providing for single-step manual 
control for algorithm flow checkout by the user; providing 
for sense lights (indicators); providing for a word source of 
zero, i.e., +O; forming Boolean functions of the Bus regis- 
ter; power-on initialization; manual startup; and bus ter- 
mination. 

DESIGN WITH RTM's 

Digital systems engineers are concerned with formulating 
algorithms that, when executed by hardware, behave ac- 
cording to the solution of the original design problem. The 
solutions of digital systems design problems using program- 
ming, conventional logical design, and RTM design are all 
similar. The three design and implementation processes have 
the same goal: to construct a program for a machine, or a 
hardwired machine to execute the algorithm stated (or 
implied) in the problem. Thus, programming and digital sys- 
tems engineering are concerned with interconnecting basic 
components or building blocks for executing algorithms; 
the building blocks are machine operations and logical de- 
sign components, respectively. RTM's are a basic set of 
components for constructing hardware algorithms. That is, 
they are the components for digital systems design. 

The design protocol using RTM's is very much akin to 
that of designing a program. The designer takes a natural 
language statement of the problem and carries out the con- 
version to a process description that acts on a set of data 
variables (and any temporary data variables). An RTM de- 
sign has two parts: 1) the explicitly declared data variables 
and the implied data operations that are attached to these 
variables; and 2) the control part, a finite state machine, 
that accepts inputs and evokes the various operations on the 



data part. The control part is shown as a combined flow 
chart-wiring diagram. 

Two examples show how this design is carried out. The 
schematic for the first example, an algorithm to sum inte- 
gers, shows all wires and modules, and the schematic for the 
second example, a small stored program computer, shows the 
control flow and the data part, but excludes the connections 
between the control and data parts. 

A small system to sum the integers to N (S+O+ I f 2  
+ . . . +N) can be built that uses the four aforementioned 
modules: DM .gpa, K.bus, K.evoke, and K.branch together 
with a switch register to enter N, and a manual start control 
module to start the system. The data and control parts to- 
gether are given in the RTM wiring diagram (Fig. 3); the 
data part is shown on the right and the control part on the 
left. The final result S and the variable N are held in a 
general-purpose arithmetic module DM.gpo. N is held in the 
switch register T initially. The control sequence is initiated 
by a K.manual-start (a human presses a key). Instead of 
counting to N, we start with N and count down to zero 
while tallying the sum S. The first control step reads T to 
register N, ( N t T ) .  The second step initializes the sum S, 
(StO).  The inner loop consists of the three functions: 
S tS+ N; N t N -  1 ; and a test for N = 0. 

EXAMPLE: A SMALL STORED PROGRAM COMPUTER 
DESIGN USING RTM's 

Fig. 4 shows an RTM diagram for a small stored program 
computer that was initially constructed as an application 
experiment to demonstrate the feasibility of the nlodules and 
to investigate systems problems. The process of specifying 
the machine took approximately two hours (with three 
people). The computer was wired and, aside from minor 
system/circuit problems (for which the experiment was de- 
signed), the computer operated essent~ally when power was 
applied, since there were no logic errors. The computer was 
designed for an actual application that had about 300 con- 
stants, 600 control steps, and about 16 variables. (An alterna- 
tive approach would have been to hardwire the 600 control 
steps directly, thereby operating faster, but being more ex- 
penslve and less flexible.) The computer has only 24 evoke 
and 16 branch controls. (By way of comparison, RTM 
interpreters to emulate the PDP-8 and the Data General 
NOVA computers require about 90 evoke and branch con- 
trol modules, 2 DM.gpa's, and core memory.) Since the 
price ratio of a single hardwired control to a single READ- 

ONLY memory control word is approximately 10: 1, and 
since the overhead price of a 1000-word READ-ONLY mem- 
ory is about 100 controls, it was cheaper in the above appli- 
cation to use RTM's to  first build an interpreter, commonly 
called a stored program digital computer, and then let the 
computer program execute the control steps. 

The data part of the machine is shown in the upper right 
of Fig. 4. Three DM-type RTM modules hold the processor 
state and temporary registers. The processor state, that part 
of memory accessible and controlled by the program, in- 

cludes: A, the accumulator; P the program counter; and L, 
a register used to  hold subroutine return addresses (links). 
The temporary registers needed in the interpretation of the 
instructions are: i, instruction holding register; and B, used 
for binary operations on A (e.g., ADD, AND). Also connected 
to the RTM bus are the READ-ONLY and READ-WRITE mem- 
ories and the Teletype, as well as a special input/output 
register interface to the remainder of the system. 

The method of defining the interpreter can be seen from 
the RTM diagram (Fig. 4). The control part consists of 
three subparts: the START and CONTINUE keys that are used to 
initialize the processor to start at location 0, and to restart 
the processor; the instruction fetch; and the instruction 
execution. The instruction fetch consists of picking up the 
instruction from the memory word addressed by the pro- 
gram counter P and incrementing P to point to the next 
instruction. The instruction is placed in the i register, which 
has been specially wired to  allow decoding of the three most 
significant bits. Individual bits of i can be tested for the 
OPERATE (OPR) instruction, and the address field i(10:O) can 
be read. 

After the instruction is fetched and placed in i, Ke(MA+i 
(10:O)) is evoked to address data referenced by the instruc- 
tion. Immediately following this evoke operation, an eight- 
way K.branch allows control to move to the one path cor- 
responding to the operation code of the instruction being 
interpreted, that is, the instruction is decoded, and control 
is transferred to  execute it. After the execution of the appro- 
priate instruction, control returns to fetch the next instruc- 
tion. For example, executing the ADD (two's complement 
add) instruction consists of loading the data from memory 
into the temporary register, B (i.e., B t M B )  and then adding 
B to the accumulator, A (i.e., A t A f  B). 

For the OPERATE instruction, which does not reference 
memory, each bit of the address part of the instruction speci- 
fies an operation to be carried out on the accumulator (test - 
for - or 0, clear, complement, add one, shift right or left, 
or return from the subroutine). Each bit is tested in se- 
quence, and if a one, the corresponding operation is carried 
out. If the instruction code with 011 = 6 is given, the computer 
halts; pressing CONTINUE restarts it. 

The instruction set is shown to be straightforward and 
simple. Subroutine return addresses are stored in a link 
register L. Thus to call subroutines at a depth of more than 
one level requires the called subroutine to save the link 
register in a temporary location. But there is no way of 
storing this register; thus it is difficult to  call a subroutine 
and pass parameter information (e.g., the location of tables). 
Since the computer requires a few minor changes to allow 
nested subroutines and parameter passing, the reader is 
invited to make the appropriate incremental changes. 

The concept of using high-level building blocks is not new, 
but we think this particular implementation of a set of sim- 
ple blocks is quite useful to many digital systems engineers. 
The design time using this approach is significantly less 
than with conventional logical design. The modules are 
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Fig. 3. RTM digital system to  take a value from a switch 
register input and to sum the integers to  the input value. 
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Fig. 4. RTM design of a small stored program digital computer. 



especially useful for teaching digital system design. We have 
solved many benchmark designs, with reasonably consis- 
tent results: the modules can be applied quickly and eco- 
nomically where there are between 4 and 100 control steps, 
a small READ-WRITE memory (100 words), and perhaps some 
READ-ONLY memory. Larger system problems are usually 
solved better with a stored program computer, although such 
a computer can be designed using RTM's. The user need 
only be familiar with the concept of registers and register 
operations on data, and have a fundamental understanding 
of a flow chart. 
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