
R@rinfed from IEEE TRANSACTIONS
ON COMPUTERS

Volurne C-21, Number 5 , May, 1972
pp. 495-500

COPYRIGHT @ 1972-THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
PRINTED I N T H E U.S.A.

The Description and Use of Register-
Transfer Modules (RTM's)@

Abstract-This note describes a set of register-transfer modules
(RTM's) that are used as a basis for digital systems design. RTM's allow
digital systems to be specified in a flow chart form with complete con-
struction (wiring) information, thus obviating combinational and sequen-
tial switching circuit theory based design. The modules make extensive
use of integrated circuitry.

The note briefly describes the class of problems that RTM's can be
used to solve, together with some of the module design decisions. The
most important RTM's are described from the user's viewpoint, and two
example designs are given.

Index Term-Asynchronous logic, computer emulation, digital system
design, flow charts, logical design, LSI, macro logic, register transfer.

In the design of digital systems (e.g., computers) the
problem formulation and the design solution are most
likely carried out at a register-transfer concept level. Early
and recent texts on logical and computer design discuss the
register transfers as primitive components, e.g., Bartee et al.
[I] and Chu [2]. Logical design simulators that use a
register-transfer language have been written and there have
been several attempts to carry out detailed sequential and
combinational logic designs from register-transfer descrip-
tions, e.g., Friedman and Yang 131. Despite the acknowledg-
ment that there are primitives based on register transfers,
there is yet to emerge a common set of modules that are
taken as primitive in the same way we think of various flip-

Manuscript received February 19,1971 ; revised May 11,1971.
C. G. Bell is with Carnegie-Mellon University, Pittsburgh, Pa.

15213, and the Digital Equipment Corporation, Maynard, Mass. 01754.
J. L. Eggert is with the Digital Equipment Corporation, Maynard,

Mass. 01754.
J. Grason is with Carnegie-Mellon University, Pittsburgh, Pa.

15213.
P. Williams is with the Digital Equipment Corporation, Maynard,

Mass. 01754.
@ Trademark of Digital Equipment Corporation, marketed under

the name "PDP-16."

flop types and NAND and NOR gates. However, Clark [4] at
Washington University, St. Louis, Mo., has been develop-
ing and evaluating such a basic set of modules, called macro-
modules.

Register-transfer modules are our first attempt at provid-
ing a basic set of modules for high-level digital systems de-
sign. These modules have been implemented by the Digital
Equipment Corporation (DEC). The design of RTM's has
been influenced by many of the above approaches and dis-
ciplines, and by programming methods. This note presents
the general problem RTM's are trying to solve, the factors
constraining their design, a brief description of the more im-
portant modules from a user's point of view, and two ex-
amples of their use.

Several aspects of the RTM system are important.
1) Digital system design is carried out entirely in terms of

the modules; combinational and sequential switching circuit
design are not used. (The process is akin to programming a
sequential computer.) Design time is significantly less than
with conventional logical design.

2) The most abstract, and usually the only representation
of a given design, has enough information for constructing
the system. This representation is a standard flow chart to
specify the control flow, coupled to a data part that holds
the data and carries out data operations.

3) The register-transfer modules make extensive use of
MSI circuitry and can use LSI circuitry to provide even lower
cost modules.

The three problem classes for which the modules were de-
signed are: special-purpose, computer-related, and educa-
tional digital systems. Although the initial motivation for
the modules was for education, they were not designed solely
for this purpose. The goals for educational use place too
many constraints on the design. The main influence of the
educational market has been to clarify the pedagogical na-
ture; hence, the description of systems is made easy. The

TABLE I

BASIC RT DESIGN DECISIONS

Logic: TTL (acceptable for speed and noise immunity; low cost).

packaging: Printed circuit boards of 5" x 82' or 2 2 x 8 2 with 72
or 36 pins (DEC compatible).

Intermediate connection: pre-wired busses; wirewrap and push-on
connections over wirewrap pins.

Logic interconnection rules: One kind of control signal and data bur.
Very small number of rules compared to ic use.

Problem size: 4 -100 control steps; 1 - 4 arithmetic registers;
16 -100 variables; possibly read-only memory.

Word length: 8, 12 and 16-bit (present de facto standard - can be
extended).

Universality and extendability: The modules aren't a panacea. m e r e
are provisions for escape to: regular integrated circuits, standard
DEC modules, and DEC computers (and their components).

Selection of primitives: Basic register, bus interconnection struc-
ture and data representation were first determined. The operations
which formed a complete set for the data representation were then
specified. With this basic module set, designs were carried out for
benchmark problems and design iteration occurred.

Notations: PMS and ISP of Bell and Newell [7] .

Automatic (algorithmic) mapping of algorithm into hardware: The
basic RT design archetype representation is a flow chart. The reg-
ister transfer operations are expressed in the ISP language.

Parallelism and speed: Provision for multiple busses; the modules are
asynchronous. (m e application classes put relatively low weight on
speed.) For teaching purposes parallelism is an important principle.
(A decision to use a bus, and thereby limit parallelism to the number
of busses was made for both cost andsim~licitv reasons.)

special-purpose digital systems are larger than 20 MSI cir-
cuits, but smaller than a stored-program computer (a typical
RTM system would have 4-100 control states, 1-4 arith-
metic units, and a small memory of 16-1000 words). Com-
puter-related applications range from computer peripherals
to the emulation of computers.

We make no attempt to show that the modules are an
optimum set, according to an objective function. Because of
the elementary nature of the control and data operations,
the set is sufficient to construct digital systems. Table I
shows the important design variables for RTM's, together
with many of the constraints. Their design is described in [S] .

THE RTM SYSTEM

The RTM system consists of about 20 different modules
and a method of interconnecting modules via a common bus
that carries data and timing interlock signals for the register
transfers. Some of the modules (DM, T, and M types) con-
nect to the bus in order to transfer data, and the remaining
modules (K type) "control7' when data are to be transferred.
The module name types are based on the structure primi-
tive types of Bell and Newell 161, [7].

A register-transfer language, ISP (instruction set processor
161, [7]), is used to define the register-transfer operations of
the RTM's. Here we use only the parts of ISP that are com-
monly known by the digital systems engineer and are similar
to a programming language (e.g., Fortran). The four main
module types are as follows.

DM-Type (Data Operation Combined with Memory)

These modules are what we commonly think of as being
a digital system (or at least the arithmetic unit). They are
the register-transfer gating paths and combinational circuits

for the simple arithmetic and logical functions-hence the
D part (for data operations). The D part carries out the
evaluation of the right-hand side of an arithmetic expression
as in a programming language in which an integer value is
computed prior to storing, e g , t A + B, +A- B, +A@ B,
t A + 1 . Thus, an expression "left-hand sidetright-hand
side" (e.g., H t C + D) is used to indicate the integer value
of the right-hand side being read and placed in the register
on the left-hand side.

M-Type (Memory)

The M (memory) part is just the registers (e.g., A, B) that
hold data between statements; these essentially correspond
to the variables that are declared in a program. The opera-
tions on memory are usually reading (t M) and writing
(M t) . Types of DM and M modules are the general-
purpose arithmetic unit, a single-transfer register, Boolean
flags (I-bit registers), READ-WRITE memories, and READ-ONLY

memories. The memories hold two's complement 8, 12, or
16-bit integers.

K-Type (Control)

The K modules are responsible for controlling the trans-
fer of data among the various registers by appropriately
evoking operations by DM and M types. The K modules are
analogous to the control structure of a program. The K
modules called K.evoke control the times when the vari-
ous operations of the DM'S and M's are evoked (executed).
The K.branch modules are used to make decisions about
which operations are to be evoked next. The Ksubroutine
modules are used to connect a sequence of operations to-
gether as a subroutme. Kserial-merge allows control flow
to merge into a single control flow when any flow input is
present. K.paralle1-branch and K.paralle1-merge modules
synchronize control where there is more than one operation
taking place at a time. Other control modules include clocks,
delays, and manual start keys.

I

T-Type (Transducers)

These modules provide an interface to the environment
outside RTM. These include the Teletype interface, analog/
digital converters, lights, switches, and interfaces to com-
puters. These modules also connect to the common data bus.

The details of the modules will be introduced by giving
the four modules that are necessary for nontrivial digital
systems: K.evoke, DM.gpa, K.branch, and K.bus.

K.evoke (Ke) is the basic module that evokes a function
consisting of a data operation and a register transfer-in
essence an arithmetic expression. When a Ke is evoked, it
in turn evokes the function, consisting of the data operation
followed by a register transfer, and when the function is
complete, Ke evokes the next K in the control sequence. The
diagram for Ke with its two inputs and two outputs is shown
in Fig. 1. In terms of a finite state machine, Ke is a state
with the ability to evoke an output action and then make a
transition to another state. K.evoke is as follows.

SHORT NOTES

i evoke t h i s cont ro l /ev

Fig. 1. Diagram for the control module K.evoke.

I evoke t h i s cont ro l

evni / (evoke next i f
Boolean i s t r u e / l /
yes

evn0/(evoke next i f
Boolean i s faise/O/no)

p - /output a c t i o n %<-&

Fig. 2. Diagram for the control module K.branch.

/
s t a t e impl ied by a K.evoke next s t a t e

K(Branch)

K.branch (Kb) provides for the routing of control flow
based on the condition of a Boolean input. The diagram for
Kb with its two inputs and two outputs is shown in Fig. 2.
Each time a branch control is evoked, it in turn evokes
either of the controls following it, depending on whether the
Boolean input is true (a 1) or false (a 0). In terms of a finite
state machine, Kb is a state with the capability of going to
either of two next states, depending on a Boolean input.
K.branch is as follows.

(-next

4
I

4
\

next
4

b t a t e

b t a t e

b t a t e imp1 ied b y K.b ranch

DM(Genera1 Purpose Arithmetic/gpa)

The DM.gpa allows arithmetic function results (data
operations) that have been performed on its two registers
A and B to be written into other registers (using the bus).
Results can also be transferred (written) into A and B
(A t ; B t) . The data operations are: +-A, t B , t1 A,
+1B,+A+B,tA-B,+A-1,+-A+1,tAX2,tAAB,
t A V B , and t A @ B . An input that evokes the function
t(Result)/2 can be combined with the previous function
outputs to give t A / 2 , t B / 2 , +(A+B)/2, etc. Two Boolean
inputs, shift in (16, - l), allow data to be shifted into the
left- and right-hand bits on /2 and X2 operations, respec-
tively. Bits of registers A and B are available as Boolean
outputs.

K(Bus Sense and Control Module/Bus)

Each independent data bus in the system requires a
centralized control module. It has a register, Bus, that always
contains the result of the last register transfer that took place
via the bus. K.bus carries out several functions: monitoring
register-transfer operations; providing for single-step manual
control for algorithm flow checkout by the user; providing
for sense lights (indicators); providing for a word source of
zero, i.e., +O; forming Boolean functions of the Bus regis-
ter; power-on initialization; manual startup; and bus ter-
mination.

DESIGN WITH RTM's

Digital systems engineers are concerned with formulating
algorithms that, when executed by hardware, behave ac-
cording to the solution of the original design problem. The
solutions of digital systems design problems using program-
ming, conventional logical design, and RTM design are all
similar. The three design and implementation processes have
the same goal: to construct a program for a machine, or a
hardwired machine to execute the algorithm stated (or
implied) in the problem. Thus, programming and digital sys-
tems engineering are concerned with interconnecting basic
components or building blocks for executing algorithms;
the building blocks are machine operations and logical de-
sign components, respectively. RTM's are a basic set of
components for constructing hardware algorithms. That is,
they are the components for digital systems design.

The design protocol using RTM's is very much akin to
that of designing a program. The designer takes a natural
language statement of the problem and carries out the con-
version to a process description that acts on a set of data
variables (and any temporary data variables). An RTM de-
sign has two parts: 1) the explicitly declared data variables
and the implied data operations that are attached to these
variables; and 2) the control part, a finite state machine,
that accepts inputs and evokes the various operations on the

data part. The control part is shown as a combined flow
chart-wiring diagram.

Two examples show how this design is carried out. The
schematic for the first example, an algorithm to sum inte-
gers, shows all wires and modules, and the schematic for the
second example, a small stored program computer, shows the
control flow and the data part, but excludes the connections
between the control and data parts.

A small system to sum the integers to N (S+O+ I f 2
+ . . . +N) can be built that uses the four aforementioned
modules: DM .gpa, K.bus, K.evoke, and K.branch together
with a switch register to enter N, and a manual start control
module to start the system. The data and control parts to-
gether are given in the RTM wiring diagram (Fig. 3); the
data part is shown on the right and the control part on the
left. The final result S and the variable N are held in a
general-purpose arithmetic module DM.gpo. N is held in the
switch register T initially. The control sequence is initiated
by a K.manual-start (a human presses a key). Instead of
counting to N, we start with N and count down to zero
while tallying the sum S. The first control step reads T to
register N, (N t T) . The second step initializes the sum S,
(StO). The inner loop consists of the three functions:
S tS+ N; N t N - 1 ; and a test for N = 0.

EXAMPLE: A SMALL STORED PROGRAM COMPUTER
DESIGN USING RTM's

Fig. 4 shows an RTM diagram for a small stored program
computer that was initially constructed as an application
experiment to demonstrate the feasibility of the nlodules and
to investigate systems problems. The process of specifying
the machine took approximately two hours (with three
people). The computer was wired and, aside from minor
system/circuit problems (for which the experiment was de-
signed), the computer operated essent~ally when power was
applied, since there were no logic errors. The computer was
designed for an actual application that had about 300 con-
stants, 600 control steps, and about 16 variables. (An alterna-
tive approach would have been to hardwire the 600 control
steps directly, thereby operating faster, but being more ex-
penslve and less flexible.) The computer has only 24 evoke
and 16 branch controls. (By way of comparison, RTM
interpreters to emulate the PDP-8 and the Data General
NOVA computers require about 90 evoke and branch con-
trol modules, 2 DM.gpa's, and core memory.) Since the
price ratio of a single hardwired control to a single READ-

ONLY memory control word is approximately 10: 1, and
since the overhead price of a 1000-word READ-ONLY mem-
ory is about 100 controls, it was cheaper in the above appli-
cation to use RTM's to first build an interpreter, commonly
called a stored program digital computer, and then let the
computer program execute the control steps.

The data part of the machine is shown in the upper right
of Fig. 4. Three DM-type RTM modules hold the processor
state and temporary registers. The processor state, that part
of memory accessible and controlled by the program, in-

cludes: A, the accumulator; P the program counter; and L,
a register used to hold subroutine return addresses (links).
The temporary registers needed in the interpretation of the
instructions are: i, instruction holding register; and B, used
for binary operations on A (e.g., ADD, AND). Also connected
to the RTM bus are the READ-ONLY and READ-WRITE mem-
ories and the Teletype, as well as a special input/output
register interface to the remainder of the system.

The method of defining the interpreter can be seen from
the RTM diagram (Fig. 4). The control part consists of
three subparts: the START and CONTINUE keys that are used to
initialize the processor to start at location 0, and to restart
the processor; the instruction fetch; and the instruction
execution. The instruction fetch consists of picking up the
instruction from the memory word addressed by the pro-
gram counter P and incrementing P to point to the next
instruction. The instruction is placed in the i register, which
has been specially wired to allow decoding of the three most
significant bits. Individual bits of i can be tested for the
OPERATE (OPR) instruction, and the address field i(10:O) can
be read.

After the instruction is fetched and placed in i, Ke(MA+i
(10:O)) is evoked to address data referenced by the instruc-
tion. Immediately following this evoke operation, an eight-
way K.branch allows control to move to the one path cor-
responding to the operation code of the instruction being
interpreted, that is, the instruction is decoded, and control
is transferred to execute it. After the execution of the appro-
priate instruction, control returns to fetch the next instruc-
tion. For example, executing the ADD (two's complement
add) instruction consists of loading the data from memory
into the temporary register, B (i.e., B t M B) and then adding
B to the accumulator, A (i.e., A t A f B).

For the OPERATE instruction, which does not reference
memory, each bit of the address part of the instruction speci-
fies an operation to be carried out on the accumulator (test -
for - or 0, clear, complement, add one, shift right or left,
or return from the subroutine). Each bit is tested in se-
quence, and if a one, the corresponding operation is carried
out. If the instruction code with 011 = 6 is given, the computer
halts; pressing CONTINUE restarts it.

The instruction set is shown to be straightforward and
simple. Subroutine return addresses are stored in a link
register L. Thus to call subroutines at a depth of more than
one level requires the called subroutine to save the link
register in a temporary location. But there is no way of
storing this register; thus it is difficult to call a subroutine
and pass parameter information (e.g., the location of tables).
Since the computer requires a few minor changes to allow
nested subroutines and parameter passing, the reader is
invited to make the appropriate incremental changes.

The concept of using high-level building blocks is not new,
but we think this particular implementation of a set of sim-
ple blocks is quite useful to many digital systems engineers.
The design time using this approach is significantly less
than with conventional logical design. The modules are

SHORT NOTES

Contro l P a r t Data P a r t

. K.manua1-start human i n p u t t o s t a r t process

L -0

N = O
Bus = '3

end - ' evoke f u n c t i o n complete

Ke E K.evoke module
Kb : K.branch module

Contro l f l ow and evoke w i res

B u s f o r data w i res

, soolean v a r i a b l e w i res

Fig. 3. RTM digital system to take a value from a switch
register input and to sum the integers to the input value.

C o n t r o l P a r t
K. bus

Consc

Bus

Data P a r t

I n s t r u c t i o n - f e t c h

K.manual evoke

I n s t r u c t i o n - e x e c u t i o n

K. Serb-merge

I n s t r u c t i o n f o r m a t : op

15 13 10 0

' c o n t r o l modules w i t h o u t t ypes a r e assumed t o bt K.evoke

Fig. 4. RTM design of a small stored program digital computer.

especially useful for teaching digital system design. We have
solved many benchmark designs, with reasonably consis-
tent results: the modules can be applied quickly and eco-
nomically where there are between 4 and 100 control steps,
a small READ-WRITE memory (100 words), and perhaps some
READ-ONLY memory. Larger system problems are usually
solved better with a stored program computer, although such
a computer can be designed using RTM's. The user need
only be familiar with the concept of registers and register
operations on data, and have a fundamental understanding
of a flow chart.

ACKNOWLEDGMENT

These modules were formally proposed in March 1970 in
a form essentially described herein by one of the authors,
C. G. Bell. In June 1970 the project was seriously started by
constructing the computer of the previous example using
them. The authors gratefully acknowledge the organization
and management contributions of F. Gould, A. Devault,
and S. Olsen (Digital Equipment Corporation) without

whose goal-oriented commitment the RTM's could not have
been biilt. The authors are also indebted to Mrs. D. Joseph-
son of Carnegie-Mellon University for typing the manu-
script.

[I] T. C. Bartee, I. L. Lebow, and I. S. Reed, Theory and Design of
Digital Systems. New York : McGraw-Hill, 1962.

[2] Y. Chu, Introduction to Computer Organization. Englewood Cliffs,
N. J.: Prentice-Hall, 1970.

[3] T. D. Friedman and S. C. Yang, "Methods used in an automatic
logic design generator (ALERT)," IEEE Trans. Comput., vol. C-18,
pp. 593-614, July 1969.

[4] W. A. Clark, "Macromodular computer systems," in 1967 Spring
Joint Comput. Conf., AFIPS Con$ Proc., vol. 30. Washington,
D. C.: Thompson, 1967, pp. 335-336. (Introduction to a set of six
papers, pp. 337-400, in the same conference.)

[5] C. G. Bell and J. Grason, "Register transfer modules (RTM) and
their design," Comput. Design, May 1971.

[6] C. G. Bell and A. Newell, "The PMS and ISP descriptive systems
for computer structures," in 1970 Spring Joint Comput. Conf.,
AFIPS Conf. Proc., vol. 33. Montvale, N. J. : AFIPS Press, 1966,
pp. 351-374.

[7] -, Computer Structures: Readings and Examples. New York:
McGraw-Hill, 1971.

